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ABSTRACT 

Lossless compression is still in high demand in medical image applications 

despite improvements in the computing capability and decrease in storage cost in 

recent years. With the development of General Purpose Graphic Processing Unit 

(GPGPU) computing techniques, sequential lossless image compression algorithms 

can be modified to achieve more efficiency and speed.  Backward Coding of Wavelet 

Trees (BCWT) is an efficient and fast algorithm, utilizing Maximum Quantization of 

Descendants (MQD) and it is quite suitable for lossless parallel compression because 

of its intrinsic parallelism and simplicity. However, the original implementation of 

BCWT is a CPU-based sequential codec and that implementation has multiple 

drawbacks which hinder the parallel extension of BCWT. Parallel Coding of Wavelet 

Trees (PCWT) modifies the BCWT from theoretical workflow to implementation 

details.  PCWT introduces multiple new parallel stages, including parallel wavelet 

transform stage, parallel MQD calculation stage, parallel Qmax search stage, parallel 

element encoding stage and parallel group encoding stage, and change the encoding 

sequence from backward to forward. All those stages are designed to accelerate the 

compression process. PCWT implementation is designed with the consideration of 

Compute Unified Device Architecture (CUDA) hardware constrains and 

implementation scalability. With newly designed workflow and highly optimized 

parallel stages, PCWT performs faster than the lossless JPEG-XR algorithm, the 

current standard, with comparable compression ratios. Multiple possible 

improvements in speed and flexibility on PCWT are also proposed as future work. 
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CHAPTER I 

INTRODUCTION 

The explosion of image data nowadays has demanded advanced image 

compression algorithms to be implemented in both image transmission and image 

storage stages. For example, for medical images, 600 million imaging procedures are 

performed in United States every year and they are taking more space than before 

since more complex imaging techniques have been applied [1]. Cloud storage has been 

proposed to address the efficiency problem of image storage and access and image 

compression algorithm is one of key techniques for cloud-based solution. Cloud-based 

solution requires scalability and consistency, which implies multiple copies of large 

image datasets [2]. Cloud-based solution also allows flexible data access, which means 

data should be able to be accessed conveniently with Wi-Fi and 3G/4G connections 

[2]. However, those accesses are relatively slow and expensive. In general, data 

transmission time during the access should be short, which requires the image data 

should be compressed and reusable. 

One of most popular standards for image compression is Joint Picture Expert 

Group (JPEG) [3]. It has been widely used in digital cameras and on Internet. 

However, JPEG is intrinsically lossy because it is based on the lossy Discrete Cosine 

Transform (DCT) [3] and it is not suitable for many high-precision-required 

applications. The successor of JPEG is JPEG2000 [4], with the ambition of improving 

JPEG with another transform, i.e. Discrete Wavelet Transform (DWT) [4]. However, 

JPEG 2000 is overly complicated and is not widely applied in image processing field. 

The latest image compression standard is JPEG-XR [5], utilizing so called hierarchical 

two-stage Lapped Biorthogonal Transform (LBT) [6]. LBT is similar to DCT except it 

can be lossless. JPEG-XR is quite new and still needs time to be widely 

accommodated. 

One distinguishing feature of DWT is the pyramid structure of its result [7]. 

DWT has the concept “level” and pyramid structure of its result reflects the 



Texas Tech University, Jingqi Ao, May 2014 

2 

independency within one level and dependency between neighboring levels. 

Dependency between neighboring levels can be utilized in compression and more 

importantly, independency within one level can be utilized to achieve high degree of 

parallelism, which implies fast compression. In this dissertation, Parallel Coding of 

Wavelet Trees (PCWT) is proposed, as a DWT-based compression algorithm, to 

achieve high speed compression, with competitive compression efficiency to JPEG-

XR standard. 

DWT-based compression generally includes two procedures: compression 

procedure and the corresponding decompression one. The compression procedure 

usually has two phases: forward transform phase and encoding phase. The transform 

phase is to generate wavelet coefficients via forward DWT and the encoding phase is 

to encode those coefficients into bitstream. The decompression procedure also 

includes two phases: decoding phase and inverse transform phase. The decoding phase 

is to restore wavelet coefficients from bitstream and the inverse transform phase is to 

restore original data by performing inverse DWT. 

DWT-based compression can be either lossy or lossless, depending on whether 

restored data are mathematically equal to original data. “Mathematical equivalency 

emphasizes on the numerical identity between restored data and original data. There is 

a type of lossy compression, called visually lossless compression [8], in which 

restored data, i.e. restored images, are not the same as original data, i.e. original 

images, but differences between restored images and original images are difficult to be 

perceived by human visual system. 

Lossless DWT-based compression is the basis of its lossy counterparts. Any 

change on any part of lossless compression can lead to a lossy compression. 

Nonetheless, not all types of losses are acceptable. Note that PCWT is implemented as 

a lossless compression, which can provide a base-line compression for any further 

modification or improvement. However, it can also be easily implemented in a lossy 

compression mode. 
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For PCWT, in transform phase, the reversible (5,3) wavelet transform is used 

for lossless compression [9]. (5,3)  wavelet transform is an integer to integer transform 

so that integer pixel values from images can be transformed to integer coefficients 

losslessly. Lifting scheme can be used in the implementation of (5,3) wavelet 

transform, which requires less memory and computation than the traditional 

convolution method [10].  

In encoding phase, Backward Coding of Wavelet Trees (BCWT) [11] is 

chosen among other wavelet coefficient encoding algorithms such as SPIHT [12], or 

EBCOT [13]. BCWT is an efficient and fast algorithm, by utilizing Maximum 

Quantization Descendant (MQD) in its one-pass encoding procedure. However, the 

original BCWT implementation is a CPU-based sequential program. In PCWT, its 

main concepts have been maintained but several main steps have been modified to 

achieve high parallelism. 

Recently, General Purpose Graphic Processing Unit (GPGPU) computing has 

been increasingly used to accelerate traditionally sequential procedures [14]. GPGPU 

computing has been proposed to be utilized in some image compression standards, 

such as JPEG2000 [15] and JPEGXR [16]. However, some aspects of those standards 

were not designed with the consideration of parallelism, e.g. entropy coding, which 

are difficult to be parallelized. On the other hand, BCWT can be a good candidate for 

lossless parallel wavelet transform based compression because of its intrinsic 

parallelism and simplicity [11]. That is also an important reason why BCWT is chosen 

as the encoding phase. 

The main research contributions of this dissertation are 1) development of an 

accelerated compression algorithm i.e., PCWT within the context of GPGPU 

demonstrating a GPGPU approach to solve existing sequential problems, 2)  

modifications and re-designs made to eliminate or at least relieve the impacts of 

GPGPU disadvantages on our final algorithm, without largely sacrificing its 

advantages thus including Block-wise Lifting-scheme Discrete Wavelet Transform 

with Boundary processing (B-LDWT+B) and two-stage encoding and excluding line-
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based implementation of BCWT [17] due to its nonadaptive, irregular result 

generation pattern and intensive I/O accesses, 3) backward coding for MQD 

computation only, otherwise, forward coding of wavelet trees, and 4) superior 

performance of PCWT over current standard, JPEG-XR, for large images (over 20 

mega pixels) in encoding speed.  

This dissertation is organized as follows: Chapter 1 briefly introduces the 

importance of image compression and reviews the development of image compression 

standard. It also provides an overview of the proposed PCWT and relevant techniques 

and outlines the main contributions of this dissertation work.  Chapter 2 illustrates 

background knowledge about BCWT, i.e. the predecessor of PCWT, and the GPGPU 

computing model used in this dissertation. Chapter 3 and 4 describe the 

implementation details of PCWT in terms of compression procedure and 

decompression procedure, respectively. Chapter 5 demonstrates test results of PCWT, 

which is compared with those of a mainstream JPEG-XR implementation. Chapter 6 

concludes the dissertation by providing the conclusion of dissertation and possible 

future work. 

  



Texas Tech University, Jingqi Ao, May 2014 

5 

CHAPTER II 

BACKGROUND OF BCWT AND GPGPU MODELS 

2.1 The Sequential BCWT 

The BCWT was originally implemented as a sequential CPU-based algorithm. 

One major improvement brought by BCWT is the simplified encoding algorithm, in 

which multiple wavelet tree searches are eliminated. The encoding is only based on 

MQD, which allows the local encoding. MQD is defined in [17] as: 
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Local encoding has two meanings: one is within each coefficient band,   to 

encode each MQD based unit, i.e. one MQD and its corresponding four coefficients, 

only the MQD based unit and one higher-level MQD are involved. Neither extra 

neighboring coefficient nor MQD is needed. The other meaning is to encode bands on 
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any level, only two levels, i.e. the current level and the adjacent higher level, are 

involved. There is no operation that involves more than two levels. 

Local encoding introduces parallelism in BCWT because multiple local 

encoding operations can run simultaneously. However, even though the parallelism of 

BCWT was mentioned [11], there is no parallel implementation of BCWT, to the best 

of knowledge of the author. 

One possible difficulty that hinders parallel implementation of BCWT is the 

parallel generation of bitstreams. Bitstream generation is usually the bottleneck of 

most image processing algorithms, because no matter how many parts of an image can 

be processed in parallel, the final bitstream is always sequential and can  only  be 

generated sequentially. Another possible difficulty is the cost of penalization. In this 

dissertation, GPGPU computing model is chosen as the parallel computing model. 

However, there are multiple new implementation issues for GPGPU computing model 

to implement BCWT, which do not exist or have little effects in CPU-based sequential 

implementation. For example, one of most significant issues is the decomposition 

level of forward wavelet transform used in BCWT. In CPU-based sequential 

implementation, the number of decomposition levels can be very high, which 

generates  small size of bands on the top level. But in GPGPU computing model, those 

small bands can jeopardize the overall performance of algorithm. Another example is 

the use of MQD in BCWT. In one BCWT CPU-based sequential implementation [17], 

MQD is used to encode coefficients for all bands except top-level bands, i.e. LL, HL, 

LH and HH bands on the top level. Those bands have their own encoding rules. 

However, in this dissertation’s implementation, pre-allocation of GPU memory prefers 

estimable and unified MQD-based coefficient encoding rules, by which all coefficients 

are encoded in the same way so that the overall required size of generated bitstream is 

easy to be estimated. 
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In BCWT CPU-based sequential implementation, the encoding sequence is 

backward, which is from the lowest level to the highest level of coefficient matrix. 

The backwardness of BCWT aims to decrease resource usage of the algorithm, more 

specifically, low memory usage during the compression procedure. The encoding of 

one band follows the generation of that band so that the band can be cleared from the 

memory after it has been encoded. This allows memory re-use, which is quite suitable 

for limited memory situations. However, in the implementation described in this 

dissertation, the running speed of the implementation has the highest priority when 

any trade-off needs to be made. Memory efficiency is considered when the 

implementation is designed but only because of hardware constraints. GPGPU 

computing model emphasizes on launching massive “workers” on the task to achieve 

high throughput. Even if each worker in GPGPU computing model has the same 

memory efficiency as the single worker in the sequential implementation, the overall 

memory usage of GPGPU computing model is still much higher than that of its CPU 

sequential counterpart because of the massive number of workers. In practice, a single 

worker of GPGPU implementation usually has less memory efficiency than its CPU 

counterpart because of GPU’s memory fetching mechanism and synchronization limit, 

which will be explained in details in Section 2.2. Since the memory does not have the 

top priority during the implementation design in this dissertation, the forward 

encoding sequence becomes promising. The thumbnail image encoding can be 

achieved by forward encoding, with much less difficulties than backward encoding. 

BCWT has made improvements over many existing wavelet-tree based 

algorithms by simplifying encoding mechanism, without decreasing compression 

efficiency [11]. However, BCWT needs further modifications on itself to be efficiently 

parallelized. Those modifications, which constitute PCWT, will be explained in details 

in Chapter 3 and 4. 

 

 



Texas Tech University, Jingqi Ao, May 2014 

8 

2.2 General Purpose Graphic Processing Unit (GPGPU) Computing 

General Purpose Graphic Processing Unit (GPGPU) Computing is to utilize 

the programmable graphics processing unit to perform general computing task, rather 

than its designated graphics related work. 

GPGPU computing has two major models: Computation Unified Device 

Architecture (CUDA) and OpenCL. CUDA [18] is a proprietary model which is solely 

supported by Nvidia and OpenCL [19] is managed by Khronos Group which includes 

multiple vendors. However, CUDA has generally better supports than OpenCL, in 

terms of books, documentations and forums. In this dissertation, CUDA is chosen as 

the GPGPU computing model to implement PCWT.  

CUDA includes a large range of topics and multiple books are even dedicated 

to CUDA itself. In this dissertation, CUDA is utilized but not the subject itself, so only 

directly relevant CUDA features are introduced in this section, which are CUDA 

memories, threads and synchronization. 

2.2.1 CUDA Memories 

Figure 2.1 shows the memory structure of CUDA [20], which include multiple 

different types of memories: global memory, shared memory, constant memory, local 

memory, etc. Among them, global memory, shared memory and local memory are 

used in the PCWT implementation. 

 

Figure 2.1 CUDA memory architecture [20] 
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Global memory has the largest volume among all those three types of 

memories but the slowest access speed. The number of global memory accesses in any 

algorithm should be as few as possible. Furthermore, the access of global memory 

should be coalesced, which means multiple consecutive bytes should be accessed at 

the same time by algorithm. For CUDA computation capability 2.0 devices, in each 

global memory read/write, 128 bytes are accessed [21]. Figure 2.2 shows a 

comparison between coalescing and non-coalescing global memory access. Suppose 

one algorithm needs interlaced bytes from two 128-byte blocks at different places. If 

one implementation does not consider coalescing access and fetch the needed data 

only when the data is required, four memory reads are required. For each read, only 64 

bytes out of fetched 128 bytes are actually used, however, totally 128 bytes are still 

fetched from global memory. On the other hand, if coalescing access is considered and 

all 256 bytes are pre-fetched by an implementation, only two global memory accesses, 

rather than four, are needed. 

 

Figure 2.2 Comparison between coalescing and non-coalescing memory access of 

256-byte data in the global memory 

Shared memory is attached to each CUDA block and has less size than the 

global memory but higher access speed. CUDA block is a software term that will be 

explained with threads and synchronization. It can be understood as a working unit 



Texas Tech University, Jingqi Ao, May 2014 

10 

with limited resources, e.g. limited shared memory attached to it. Different from 

global memory, shared memory does not require coalescing access. Shared memory is 

usually the place where intensive, random memory accesses happen. Note that shared 

memories belonging to different CUDA blocks are independent, meaning that 

“workers” in one block can only access to the shared memory of that block. 

“Workers” from one block cannot access the shared memory of another block. Shared 

memory will be further discussed with synchronization. 

Local memory has the fastest access speed but highly limited volume. Each 

worker (i.e. thread) has its unique local memory. The limited volume of local memory 

usually constrains the use of it. For CUDA computation capability 2.0 devices, each 

worker has very limited local memory, i.e. only 63 32-bit registers and many of them 

are used by compiler without any notice to programmers. The available registers for 

programmers are much less than 63 and the exact number depends on how a specific 

program is compiled. Local memory should be used for distinguishing values of each 

thread, which are unique for each thread and need to be stored for further use. Use 

local memory to store input or output is neither efficient nor even possible in many 

cases. 

2.2.2 Threads and Thread Divergence 

After data is stored in memories of devices, “workers” are sent to process those 

data and generate the desired output. In CUDA, those workers are defined as threads. 

Threads are software abstract of working items supported by hardware, so it has both 

software and underlying hardware meanings. On hardware level, each thread 

represents a basic working unit in a CUDA core resident in a GPU multi-processor. 

One GPU card usually has multiple multi-processors. For example, Nvidia GTX 570 

GPU has 15 multiprocessors, in each of which there are 32 CUDA cores (also called 

“wraps” in some CUDA literatures) and each CUDA core launches 32 threads at the 

same time. However, calculating the maximum parallel threads running at any given 

time by                is not accurate, because not all 32 cores on one multi-

processor can run at the same time. CUDA hardware scheduling details are never 
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disclosed thoroughly, to the best of knowledge of the author. Based on some available 

materials [22], only a small number of 32 CUDA cores on each multi-processor can 

run at the same time. The reason why there are more CUDA cores existing than the 

number they can run simultaneously is that GPU can switch between CUDA cores 

when one specific core is idling for resources or data, e.g. waiting for a large amount 

of data read from memory.  

In our implementation, the thread is more often referred as its meaning on 

software level. On software level, the whole task is divided into multiple CUDA 

blocks and in each block multiple threads execute their designated work 

independently. When all threads in one block finish their work, that block is done. 

When all blocks are done, the task is finished. In CUDA, each block has both thread 

and shared memory limits: for computation capability 2.0 device (e.g. GTX570), each 

block can launch at most 1024 threads, with 48kB shared memory. For example, if one 

block is used to process a 100x100 monochrome 32-bit image (i.e. single color per 

pixel and each pixel is 32-bit), data of that image can be copied to the block’s shared 

memory and at most 1024 threads can be used to process all 10,000 pixels, which is 

about 10 pixels per thread.  

The number of blocks used to process a specific task and the number of threads 

per block are determined by multiple factors, such as hardware constraints and 

algorithm design. In some cases, multiple blocks are mandatory. For example, if one 

image has large size, the shared memory of one block cannot hold the complete image 

and the whole processing has to be divided into multiple blocks. For 1000x1000 

monochrome 32-bit images, the number of blocks should not  be less than 976. In 

other cases, multiple blocks are the result of optimization. For example, multiple 

blocks are required if more threads are needed. To process the same 100x100 image to 

achieve higher processing speed, ten blocks with total 10,000 threads can be launched 

so that one thread in each block only needs to process one pixel. In practice, 10 times 

thread launching can achieve 2-5 times acceleration due to the fixed overhead of 

memory IO.  
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Note that CUDA threads are not completely independent. Each CUDA core 

launches 32 threads at the same time and those 32 threads are expected to do the same 

work at any given time. If any thread of those 32 threads performs different work from 

other threads, thread divergence happens. For example, if 32 threads of one CUDA 

core are used to process 32 elements (each thread for one element), even index threads 

(#0, #2, #4, … #30) adds one to their corresponding elements and odd index threads 

(#1, #3, #5, …, #31) subtracts one from their corresponding elements, thread 

divergence happens between even- and odd-index threads. To react to this divergence, 

CUDA runtime launches those 32 threads twice. In the first run, 32 threads are 

launched but only even-index threads do the real work i.e., adding one to elements, 

and odd-index threads are idling. In the second run, 32 threads are launched again, but 

only odd-index threads do the real work i.e. subtracting one from elements and even 

index ones are idling. It can be found that thread divergence affects the executing 

speed adversely. If all 32 threads perform adding or subtracting task, there is no thread 

divergence and only one run is needed. But with thread divergence, one extra run is 

needed. If the thread divergence is more severe, e.g. threads are sent to do 32 different 

tasks, the performance could be further degraded. Note that it is difficult to achieve 

zero thread divergence in most algorithm implementations but explicit thread index 

based branches, like the odd- and even-index thread example above, should be 

avoided whenever possible. 

2.2.3 Synchronization 

Blocks are not only used to provide parallel thread launching and fast shared 

memory, but they are also the synchronization basis of any task. Synchronization 

provides a deterministic state of execution of multi-thread tasks. Generally, the 

execution state of multi-thread task is undetermined. For example, if 128 threads are 

used to add one to each element of a 128-element array, thread #0 is not necessarily 

the first thread to start or finish. Thread #127 could be the first thread to launch due to 

the CUDA core scheduling. If the following execution depends on the completion of 

all 128 threads, synchronization is needed. Synchronization of all 128 threads means 
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the execution will halt until all 128 threads finish their work, so that the following 

execution can start without the risk that any thread within those 128 threads has not 

finished yet. However, only threads within the same blocks can be synchronized. For 

example, if 10 blocks with 1,000 threads in each block are used to process 10,000 

pixels, only 1,000 threads within the same block can be synchronized. Thread #0 can 

be synchronized with thread #999 in the block #0; but thread #0 in block #0 cannot be 

synchronized with thread #0 in block #1. There is no guarantee that which block runs 

or finishes first after multiple blocks are launched (e.g. block #0 could run before 

block #1 and block #1 could run before block #0). This limited synchronization within 

the same block affects the design of algorithm, meaning tasks assigned to each block 

should not have any dependency on each other. Threads from different blocks can be 

synchronized only after one kernel is finished. Kernels can be viewed as parallel 

functions with block configuration attached to it. It can be understood as threads from 

different blocks can be synchronized only after all those blocks are finished. Kernel 

launching has its own overhead so launching too many kernels only for thread 

synchronization is not efficient. Parallelization of sequential algorithms is usually 

involved with execution flow change or even theoretical modification because of the 

limited synchronization of CUDA framework. 

GPU memories and their accesses, thread launching, execution mechanisms 

and synchronization are the three main CUDA factors which affect re-design and 

implementation of the PCWT algorithm. These factors will be pointed out when the 

detailed implementation is explained in following chapters. 
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CHAPTER III 

PCWT COMPRESSION PROCEDURE 

The compression procedure includes six main stages: parallel Block-based 

Lifting-scheme Discrete Wavelet Transform with Boundary processing (B-LDWT+B), 

parallel MQD calculation, parallel QMAX search, parallel element encoding, parallel 

group encoding and sequential bitstream output. 

3.1 Parallel B-LDWT+B 

Parallel B-LDWT+B is to generate Lifting-scheme Discrete Wavelet 

Transform (LDWT) coefficients for following encoding stages. It is based on (5,3)- 

LDWT, with boundary processing and block configurations. Before explaining B-

LDWT+B, the traditional (5,3)-LDWT is reviewed. 

3.1.1 (5,3)-LDWT  

For an array with    elements, 1D (5,3) forward LDWT can be calculated by 

[9]: 

H-component (Odd-index elements):  [    ]   [    ]  ⌊( [  ]  

 [    ])  ⌋,           . (Eq. 3-1) 

L-component (Even-index elements):  [  ]   [  ]  ⌊( [    ]  

 [    ]    )  ⌋,          . (Eq. 3-2) 

And the corresponding inverse 1D LDWT can be calculated by: 

L-component (Even-index elements):  [  ]   [  ]  ⌊( [    ]  

 [    ]    )  ⌋,          . (Eq. 3-3) 

H-component (Odd-index elements):  [    ]   [    ]  ⌊( [  ]  

 [    ])  ⌋,           . (Eq. 3-4). 

The 2D (5,3) LDWT can be divided into two phases, i.e. 2D horizontal LDWT 

and 2D vertical LDWT, which are both depends on 1D (5,3) LDWT. Generally, 2D 

forward LDWT performs 2D forward horizontal LDWT first and 2D forward vertical 



Texas Tech University, Jingqi Ao, May 2014 

15 

LDWT second. Correspondingly, the 2D inverse LDWT performs 2D inverse vertical 

LDWT first and 2D inverse vertical LDWT second. 

Four implementation issues are needed to be addressed when implement 2D 

LDWT with CUDA: 

(1) 1D forward LDWT expects even number of working elements on each 

decomposition level. For N-level 2D forward LDWT, for the working matrix with size 

   , one common step is to pad the row and column number of the working matrix 

to the smallest power of 2 integer (  ) that is not less than   and  . However, this 

type of padding causes unnecessary computation. For example, to perform 2-level 2D 

forward LDWT on matrix 129x129, the matrix is padded to 256x256. Only about 25% 

elements are effective elements. 

(2) When (5,3)-LDWT is performed on an array with finite    elements  [ ] 

(          ), two elements  [  ] and  [  ] do not exist, when compute H-

components and L-components, respectively. 

(3) CUDA can only provide limited shared memory for either horizontal or 

vertical (5,3)-LDWT. For Computation Capability 2.0 devices, the shared memory 

limit for each block is 48kB. Using shared memory is critical for obtaining the correct 

forward LDWT or inverse LDWT result fast. Shared memory allows much faster 

memory access than the global memory and synchronization of threads from the same 

block. Synchronization ensures that H- and L-component computations are performed 

deterministically and guarantees the correctness of the generated result.  

If a specific GPU hardware does not have enough shared memory to process a 

complete row or column of 2D (5,3)-LDWT, without proper modifications, the direct 

block-wise LDWT implementation introduces block effects on the boundary of each 

block [15]. 

(4) Forward (5,3)-LDWT generates interlaced decomposition results in which 

L-components are interlaced with H-components. In practice, generated L- and H-
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components are expected to be clustered as the intermediate result for the next level 

decomposition or as the final result to be presented.  

To solve the issues mentioned above, Block-wise LDWT with Boundary 

processing (B-LDWT+B) is proposed to perform fast and efficient LDWT without 

loss and block effect. 

3.1.2 Parallel B-LDWT+B 

Figure 3.1 shows an example of forward 1D B-LDWT+B transform with 

boundary processing and I2C operation, on a 12 elements with 3 blocks. The rest of 

this section will explain how steps in 1D B-LDWT+B are introduced to solve the issue 

(1) to (4) mentioned in the last section (Section 3.1.1). 

 

Figure 3.1 Forward 1D B-LDWT+B transform on 12 elements with 3 blocks 

To solve issue (1), the Maximum Allowed Decomposition Level (MADL) of 

2D forward LDWT and band/level size list are proposed.  

Theoretically, with proper padding, 2D forward LDWT can be performed 

continuously until 1x1 LL band is achieved. However, more levels 2D forward LDWT 

performs with, smaller sizes of top level bands are generated. Lacking of enough 

elements in those bands limits the parallelism of computation of those bands. The 
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limited benefits from parallelism of small highest level bands can be overwhelmed by 

cost of transforming data between host (CPU) and device (GPU) in terms of running 

time, which means small sizes of top bands affect the performance of our parallel 

algorithm adversely. The MADL is proposed to constrain the level used for 2D 

forward LDWT, based on the size of working matrix. It means matrices with different 

sizes have different MADLs. 

The MADL can be calculated based on the pre-set minimum row and column 

number of the highest level band size LL_MIN_R and LL_MIN_C. For example, if 

LL_MIN_R  is set to 64, which means the row number of LL band should be equal or 

larger than 64. For images with size 1024x1024, the maximum allowed decomposition 

level of DWT is 4, because 
    

  
    but 

    

  
      .  

The MADL aims at improving performance of B-LDWT+B implementation, 

but it also helps the implementation to avoid over-computation by not performing 

unnecessary decompositions that is above MADL. 

Note that over-computation still exists in decompositions within MADL, and 

level/band size is proposed to handle that. “Level size” is defined as the row number 

and column number the input matrix for one level 2D LDWT. “Band size” is defined 

as the row number and column number of bands generated by 2D LDWT. In standard 

2D LDWT implementation, the level size and band size are “interchangeable”, which 

are only different with a factor of 2. However, in our algorithm, level sizes and band 

sizes are relative but calculated differently. Level sizes are used in both forward and 

inverse LDWT and band sizes are mainly used for encoding (i.e. band-based 

encoding) and decoding. 
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Figure 3.2 Band and level size calculation 

Figure 3.2 shows an example of difference between level size and band size.  

Differences rise from different rules on which level sizes and band sizes are 

calculated. 

 For level size, the level size of any level must be even. In Figure 3.2, the level 

row size at Lv4 would be 513 if directly calculated from Lv3 (
    

 
    ). The actual 

level size at Lv4 is padded to 514 with one row of 0, to ensure the Lv4 LDWT 

decomposition can be done. However, the level row size at Lv3 is still maintained as 

1026 rather than 1028 (          ). The potential over-computing of forward 

DWT on Lv3 is avoided. 

On the other hand, for band size, the band size of any band must be even. This 

is from the assumption of following encoding stages, which is “every band should 

have corresponding MQD band”. In Figure 3.2, the band’s row size at Lv5 would be 

129 (
   

 
    ) but is padded to 130. However, the band’s row size at Lv4 is still 258 

rather than 260 (         ) so the potential over-computing and further over-

encoding in following encoding stages on Lv4 is avoided. 
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There is another parameter related with level and band size, i.e. the band offset. 

It will be explained in Section 4.4.  

To address issue (2), boundary processing is needed to substitute the missing 

element  [  ] and  [  ] in the data array. In B-LDWT+B, two types of boundary 

processing methods, boundary flipping and boundary extension, are used. Choosing 

these methods instead of using simple padding zero or mirroring boundary is because 

of the block constraints in solution of issue (3). The details of boundary flipping and 

boundary extension will be explained when addressing the issue (3).  

To address the issue (3), both horizontal 2D B-LDWT+B and vertical 2D B-

LDWT+B have to be processed block by block. Blocks here refer to CUDA blocks but 

they can be conceptual blocks of image processing fields. Directly dividing the input 

2D matrix into multiple blocks and processing those blocks independently without 

proper boundary processing brings the boundary effect to the DWT decomposition 

result. Such rough block division will also cause the “fixed block size” problem that is 

the block size used in forward transform could hinder the execution of inverse 

transform. For example, if the hardware used in forward transform has enough 

memory to process blocks with size 512x512 but the hardware used in inverse 

transform does not have enough memory to process the same size blocks, the lossless 

inverse transform is not able to proceed.  

Boundary flipping and boundary extension are used in B-LDWT+B to achieve 

block-wise lossless LDWT with arbitrary block configuration. As shown in Figure 3.1, 

blocks in our B-LDWT+B implementation can be classified into two categories: edge 

blocks and middle blocks. For edge blocks, boundary-flipping (mirroring the boundary 

elements) is used on one end and boundary extension (reading elements outside the 

current block) is used on the other end. For middle blocks, boundary extensions are 

used on both ends. Figure 3.1 shows an example of boundary flipping and boundary 

extension of edge and middle blocks. 
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To solve the issue (4), embedded Interlacing-to-Clustering (I2C) operation is 

introduced to cluster the L- and H-components. “Embedded” means this operation is 

embedded in both L- and H-component calculation so that there is no extra clustering 

step after L- and H-component calculations are finished.  As shown in Figure 3.1, the 

clustered result (L-components are marked in red and H-components are marked in 

blue) is stored in the global memory as the result of 1D B-LDWT+B, without an extra 

clustering operation involved. 

Comparing to the alternative independent I2C operation, there are several 

advantages of embedded I2C operation:  

(1) The kernel launching overhead [23] of extra I2C operation can be avoided;  

(2) Implementation of embedded I2C operation is simpler than independent 

I2C operation. Each embedded I2C operation is performed in either horizontal or 

vertical direction, which means it needs to handle only two types of components, i.e. 

L-components and H-components. The independent I2C operation clusters elements in 

both horizontal and vertical direction, so it has to process four types of components, 

i.e. LL-, HL-, LH- and HH-components;  

(3) The number of global memory operations of the embedded I2C operation is 

less than those of independent I2C operation. Independent I2C operation needs extra 

global memory access to read the interlaced result into shared memory, process it and 

write the clustered result back to global memory. Those extra global memory accesses 

will decrease the overall running speed of B-LDWT+B. 

2D B-LDWT+B is a variant of (5,3)-LDWT, with boundary processing, block 

configurations and embedded clustering operations. Different from traditional CPU-

based 2D (5,3)-LDWT, in which identical 1D LDWTs are performed on different 

directions i.e. horizontal and vertical directions sequentially, implementations of 

horizontal and vertical part of 2D B-LDWT+B has significant differences. Section 

3.1.3 and 3.1.4 will describe the details of horizontal and vertical part of 2D B-

LDWT+B and demonstrate those differences. 
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3.1.3 Implementation of Horizontal 2D B-LDWT+B 

Horizontal 2D B-LDWT+B includes six steps:  

(1) The input matrix, i.e. the original image for the first level decomposition or 

the LL band from the previous decomposition, is divided into blocks. One block 

contains a part of row. For input matrix size    , the block configuration is   ⌈
 

 
⌉, 

in which   is the number of element processed by one block. 

(2) Blocks are read from GPU global memory (global memory 2D array #1) 

into blocks’ corresponding shared memories. For each block, four extra elements 

outside the block are also read for boundary extension, as shown in Figure 3.1. The 

elements designated to be processed by the block are called effective elements and the 

4 extra elements are called boundary elements. Effective elements and boundary 

elements constitute the input section of shared memory of that block. 

(3) Optional boundary flipping is performed on one end of the input section, if 

the block is a boundary block.  

(4) Calculate H-components. 

(5) Calculate L-components. Note the interlaced result is generated after this 

step and generated H- and L-components are stored in the output section of shared 

memory. 

(6) Perform embedded I2C operations on generated H-elements and L-

elements. The interlaced result is copied from 2D array #1 to another global memory 

2D array (2D array #2). Extended band offsets, which will be explained in section 4.4, 

are used to relocate H- and L-elements in 2D array #2. 

Note that there are cases that the rightmost blocks has fewer elements than the 

preset block size. For example, if the width of image is 640 and the block size is 256, 

then each row is divided into 3 blocks, with 256, 256, and 128 elements, respectively. 

With proper boundary processing, i.e. boundary extension on the left end and 

boundary flipping on the right end, those rightmost blocks can proceed through step 
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(2) to (6) without any padding. It means that the rightmost block with 128 elements 

does not have to be padded to 256 elements. 

Figure 3.3 shows an example of horizontal 2D B-LDWT+B. Each row of the 

input matrix in global memory 2D array #1 has been divided into three blocks. Block 

#0 and #1 are complete block and block #2 is the incomplete block which has fewer 

elements than block #0 and #1. After step 1 and 2, each block has been read into 

shared memory, with boundary extension that is marked by broken lines. After step 3, 

4 and 5, the L- and H-components in each block has been generated. After step 6, 

clustered L- and H-components are stored in global memory 2D array #2. Note there is 

a horizontal band offset between generated L and H bands, which will be explained in 

section 4.4. 
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Figure 3.3 Example of horizontal 2D B-LDWT+B 

3.1.4 Implementation of Vertical 2D B-LDWT+B 

Vertical 2D B-LDWT+B has different implantation from its horizontal 

counterpart because of the 2D array storage mechanism in GPU global memory and 

global memory coalescing access. The 2D array is stored row by row in GPU’s global 

memory and 2D array can be only accessed efficiently in a coalescing pattern which 
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requires threads in one CUDA block to read consecutive global memory (generally 

128 bytes [21]).  

The efficient way to access elements in 2D array in global memory is to read 

elements row by row, and the direct access a single column of 2D array is not 

efficient. Figure 3.4 shows the comparison between column-wise and row-wise 2D 

matrix processing. Assume element processing in both methods are the same so that 

the difference is majorly introduced by the coalescing global memory access. To 

process the input matrix with size 64x32, each fetch of column-wise processing reads 

a complete column by using 64 memory accesses and most of elements read are 

dropped. Overall, column-wise 2D matrix processing performs 2048 global memory 

accesses. On the other hand, the row-wise processing fetches the data by coalescing 

accesses. Suppose each fetch only reads two rows, i.e. 64 elements which fit the 

number of elements processed in column-wise processing. Overall, row-wise 2D 

matrix processing performs only 64 global memory accesses. It can be found that by 

using row-wise 2D matrix processing method, temporal cost of data I/O, which is 

notorious performance bottleneck of GPGPU computing [24], is decreased to 1/32. 

Nevertheless, in some cases, row-wise 2D matrix processing method requires 

modifications on algorithms to accommodate the data structure fetched into the 

processing unit, especially when the original algorithm is column-wised, like vertical 

2D B-LDWT+B. 
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Figure 3.4 Comparison between column-wise and row-wise 2D matrix processing 

To increase the efficiency of global memory access in vertical 2D B-

LDWT+B, the block used in vertical 2D B-LDWT+B is 2D, which means each block 

includes elements from multiple rows and columns. 

Vertical 2D B-LDWT+B includes six steps:  

(1) The input matrix, i.e. the result of the previous horizontal 2D B-LDWT+B, 

is divided into multiple blocks. One block contains multiple partial columns. For input 

matrix size    , the block configuration is ⌈
 

 
⌉  ⌈

 

 
⌉, in which   and   are the 

number of elements processed by one block in horizontal and vertical direction, 

respectively. 

(2) Similar to horizontal 2D B-LDWT+B, blocks are read from GPU global 

memory (global 2D array #2) into the blocks’ corresponding shared memory. For each 

block, four extra rows of elements outside the block are also read for boundary 

extension.  

(3) Optional boundary flipping is performed if the block is boundary block.  

(4) Perform H-step of 1D B-LDWT+B. 

(5) Perform L-step of 1D B-LDWT+B. 
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(6) Perform embedded I2C operations on generated H-elements and L-

elements. The interlaced result in global 2D array #2 is clustered and copied to global 

2D array #1. The clustered result in 2D array #1 can be used for the next level 

decomposition or output of the whole 2D B-LDWT+B stage. 

Figure 3.5 shows an example of vertical 2D B-LDWT+B. The result of 

horizontal 2D B-LDWT+B has been stored in global memory 2D array #2. Each 2D 

block contains 4x3 elements. The row number is larger than the column number for 

each 2D block reflects that in each block transform is performed along each column. 

Each block should contain as many elements in vertical direction as possible. Similar 

to the example in Figure 3.3, Block #0 and #1 are complete block and block #2 is the 

incomplete block which has fewer elements than block #0 and #1. After step 1 and 2, 

each block has been read into shared memory, with boundary extension that is marked 

by broken lines. After step 3, 4 and 5, the L- and H-components in each block have 

been generated. After step 6, clustered L- and H-components are stored in global 

memory 2D array #1. Note there is also a vertical band offset between generated L and 

H bands, which will be explained in section 4.4. 
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Figure 3.5 Example of vertical 2D B-LDWT+B 

Note that in the previous horizontal 2D B-LDWT+B, the block could be also 

set as 2D. Processing one partial row in 2D horizontal B-LDWT+B needs extra 

elements i.e. boundary elements, which usually causes extra global memory accesses. 

To decrease the temporal cost from those extra global memory accesses, each row 

should be divided into as few partial rows as possible. Since each block’s shared 

memory is limited, in 2D horizontal B-LDWT+B, the block is chosen as 1D, which 

requires less block number for each row than 2D block. 

Similarly, in vertical 2D B-LDWT+B, block number that is used to process 

each column is expected as little as possible. However, the block’s height cannot be 

arbitrarily large because of limited block shared memory and 128 bytes (thrity-two 32-

bit integers) recommended block row width. 
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3.2 Parallel MQD calculation 

3.2.1 Modified MQD calculation 

There are multiple methods to encode the generated 2D B-LDWT+B 

coefficients. In our algorithm, Maximum Quantization Descent (MQD) is used to 

encode coefficients because of its inherited parallelism. In general, every four 

coefficients with their corresponding MQDs can be encoded independently. 

Different from the original BCWT [11], in our algorithm, all coefficient bands 

have their corresponding MQD matrix, called MQD bands. It means that all HL, LH, 

HH and LL (only exists on the top level) bands have their corresponding MQD bands. 

This simplifies the encoding procedure and decreases the difficulties in implementing 

our algorithm. 

The generation of MQD matrix is from the lowest level to the highest level. 

There are two types of MQD bands: 

(1) MQD band without corresponding lower level MQD band’s support and 

(2) MQD band with corresponding lower level MQD band’s support. 

Type (1) MQD bands are MQD bands corresponding to coefficient bands on 

the lowest level and the LL band. Type (2) bands are MQD bands corresponding to the 

remaining coefficient bands. Two types of bands have different calculation rules: For 

type (1) MQD band, only coefficients are involved in the calculation. More specially, 

for each MQD element in type (1) MQD band, only 4 coefficients are used. For type 

(2) MQD band, both coefficients and MQD elements from supportive MQD bands are 

involved. It means that for each MQD element in type (2) MQD band, 4 coefficients 

from its corresponding coefficient band and 4 MQD elements from its supportive 

MQD band are used. 

Figure 3.6 shows MQD calculation with and without lower-level MQD band 

on Lv2 and Lv1, respectively. “Qmax()” is a function used to find the maximum 

Quantization Level (QL) of current level four-coefficient unit [11]. The QL of one 

coefficient can be understood as the minimum number of bits that are needed to 



Texas Tech University, Jingqi Ao, May 2014 

29 

losslessly store the absolute value of that coefficient. However, there are differences 

between QL of one coefficient and actual minimum number of bits needed by the 

coefficient.      means the minimum number of bits is 1 bit. And the 0’s QL is 

defined as -1. “Max()” is a function used to find the maximum value among a group of 

numbers.  

 

Figure 3.6 Calculation of two types of MQD bands 

To calculate type (1) MQD, for example, to calculate four coefficients (-5, -4, 

0, 1)’s MQD, QL of each coefficient is calculated first: 

  (  )   ⌊    (|  |)⌋   ,  

  (  )  ⌊    (|  |)⌋   ,  

  ( )    ,  

  ( )   ⌊    (| |)⌋   .  

The maximum QL out of those four QLs is 2, which means the MQD of those 

four coefficients is 2. 

To calculate type (2) MQD, for example, the MQD of four coefficients (28, -7, 

35, -23), QL of each coefficient is calculated first: 
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   (  )   ⌊    (|  |)⌋   ,  

   (  )  ⌊    (|  |)⌋   ,  

   (  )  ⌊    (|  |)⌋   ,  

   (   )   ⌊    (|   |)⌋   ,  

Note the candidate MQD, but not the final MQD, is 5. 

Then four MQDs from the supportive MQD band are obtained as (2, 4, 3, 3) 

and the maximum value among those four MQDs and the candidate MQD is 5. The 

final MQD is determined as 5. 

3.2.2 Implementation of Parallel MQD Calculation 

In parallel MQD calculation, each MQD band is divided into multiple blocks. 

Currently, there is no parallelism between bands, which means one CUDA kernel 

processes one band and bands of MQD matrix are processed sequentially. Parallelism 

can be expended from within-band to between-band. To process multiple bands in one 

CUDA kernel, different band offsets need to be sent to the kernel and branches for 

different bands are introduced into the kernel, which could degrade the performance of 

parallel MQD calculation. 

The processing sequence of bands is from the lowest level to the highest level. 

Within each level, it follows HL-, LH- and HH-band sequence. The last band to be 

processed is the LL band. 

The parallel MQD calculation for one band includes four steps: 

(1) The MQD band is divided into multiple blocks. For the target MQD band 

with size    , the block configuration is   ⌈
 

 
⌉, in which   is the number of 

MQDs generated by each block. 

(2) For type (1) MQD band, each block takes      coefficients from the 

current level coefficient band in the global memory.  For type (2) MQD band, each 



Texas Tech University, Jingqi Ao, May 2014 

31 

block takes      coefficients from the current level coefficient band and     

MQDs matrix from the supportive MQD band in the global memory. 

(3) Each thread generates one MQD, called the target MQD. The target MQD 

is generated from four coefficients, with or without four supportive MQDs. The thread 

obtains the maximum coefficient of these four coefficients and calculates its QL. If the 

band is type (1), the calculated QL is the target MQD; if the band is type (2), the 

calculated QL is taken as the candidate MQD and compared with four supportive 

MQDs. The maximum value among them is taken as the target MQD. 

(4) After all     MQDs of one block are generated, the block copies those 

MQDs back to MQD matrix in global memory, based on the offset and size of the 

band. The calculation of each MQD band’s offset and size will be demonstrated in 

section 4.4. 

Figure 3.7 shows an example of parallel MQD calculation. It is based on the 

same numerical example in Figure 3.5. It can be found that the processing band has 

been divided into blocks. As shown in Figure 3.7 (a), for type (1) MQD band, only 

coefficients are read into the shared memory and calculated MQD is copied back to 

corresponding MQD band. For type (2) MQD band, as shown in Figure 3.6 (b), both 

coefficients and MQDs from supportive MQD band are copied into the shared 

memory. Note the distance between coefficients from two rows, for example, the 

offset between coefficients -5, -4 and 0, 1 in Figure 3.6 (a), which reflects the row-

wise storage in the shared memory. 
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(a)

 

(b) 

Figure 3.7 Example of parallel MQD calculation 
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3.3 Parallel Qmax search 

3.3.1 Qmax and parallel maximum value search 

Qmax is defined as the maximum value within the highest level of MQD 

matrix, called “search matrix”. The search matrix includes MQD bands corresponding 

to LL-, HL-, LH- and HH-band on the highest level of coefficient matrix. Qmax is 

used to encode the highest level MQD bands, which will be explained in section 3.4. 

The temporal complexity of sequential comparison-based maximum value 

search is at least O(n), which means it is linearly proportional to the amount of data to 

be processed. “Comparison-based” means that the maximum value is obtained as the 

result of a series of comparisons. If any new value is larger than the current maximum 

value, the maximum value is updated with the new value; otherwise the maximum 

value remains unchanged. O(n) reflects the fact that it is impossible to tell the 

maximum value of a list without at least checking each element in the list. Parallel 

Qmax search utilizes more hardware resources, i.e. more threads on more data within 

a given time internal, to decrease the overall temporal complexity of search. 

Maximum value search is parallelizable to a certain degree. The parallel 

maximum value search used in PCWT is a comparison-based reduction operation on 

the search matrix. “Reduction” means the number of elements being operated decrease 

gradually along with the proceeding of search. 

As shown in Figure 3.8, there are three phases in Qmax parallel search: 

horizontal reduction, vertical reduction and final reduction. Their implementation 

details will be explained in following sections 3.3.2 to 3.3.4. 
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Figure 3.8 Three main phases of parallel Qmax search 

3.3.2 Implementation of horizontal reduction 

Horizontal reduction is a block-based parallel operation to reduce the 

horizontal dimension of the search matrix, i.e. the number of columns in the search 

matrix. Each block processes one row of search matrix, which implies that the shared 
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memory of one block can hold a complete row of the search matrix. For CUDA, this 

assumption is reasonable. Use 10000x10000 images as an example, after 5-level B-

LDWT+B is performed, the width of search matrix is less than 256. The typical size of 

CUDA shared memory per block is 48kB which can hold more than 10,000 32-bit 

integers. Therefore, the assumption is valid for most of images. The horizontal 

reduction having multiple blocks for one row can be implemented in a multi-pass style 

that is similar to the following vertical reduction, which will be described in details in 

section 3.3.3. 

The horizontal reduction has four steps: 

 (1) The search matrix is divided into multiple blocks. For the search matrix 

with size    , the block configuration is     and each block processes   

elements. 

(2) Each block copies one row from the original search matrix into the block’s 

shared memory. 

(3) In each block,   threads are launched and thread   performs comparison-

based maximum value search on element ,   ,    until the end of row. The element  , 

  ,   , … are called the thread  ’s search range within the block. The maximum value 

within that search range is updated at element  , meaning that the current maximum 

value is always stored at element  . 

(4) Copy the reduced row with size  , which consists of maximum values from 

each thread’s search range, back to the original search matrix. Note that the horizontal 

reduction generates a horizontally compacted search matrix with size    . 

Figure 3.9 shows an example of horizontal reduction on a 5x5 search matrix. 

Suppose each block can hold maximum 6 elements and    . It means that three 

threads are used in each block.  
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Figure 3.9 An example of horizontal reduction 

Each row of the search matrix is assigned to a block and each thread compares 

the first element with the rest elements in its search range. Note that the third thread in 

each block has only one element in its search range, for example, 4 in the first row or 

14 in the second row.  

The maximum value within each thread’s search range replaces the first 

element in its search range. For example, for the first thread in the first block, element 

5 replaces element 1.  But for the second thread in the same block, the first element 3 

is the larger than element 2, so that there is no update.  

The resulting 5x3 matrix (whose elements are marked by blank underscore 

lines) is the generated horizontally compacted matrix, which is the input for the next 

phase. 
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3.3.3 Implementation of vertical reduction 

After the horizontal reduction is finished, the vertical reduction is performed to 

reduce the vertical dimension of the search matrix i.e. the row number of the search 

matrix. The goal of vertical reduction is to reduce the number of horizontally 

compacted rows, so that the final reduction, which will be explained in section 3.3.4, 

can use only one block to process all remained rows and obtain the final maximum 

value. The vertical reduction is a block-based multi-pass parallel operation. “block-

based” means in each pass, the working matrix is divided into multiple blocks. Each 

block reduces multiple rows into one row to achieve in-block vertical reduction. 

“Multi-pass” indicates that in many cases, one pass cannot reduce the number of 

elements in the resulting matrix below the maximum allowable size of final reduction, 

so the vertical reduction needs multiple passes to achieve its goal. 

In general, if one pass in the vertical reduction can approximately reduce the 

vertical size of the working matrix to 
 

 
, the number of passes   to reduce the matrix 

row number from   to   can be calculated as: 
 

  
  , that is       

 

 
. It is an 

efficient reduction, for example, if the vertical size needs to be decreased from R = 

10000 to r = 10 and each block can contain      rows, only three passes are 

required. 

The vertical reduction includes multiple passes. In each pass, the vertical 

reduction has four steps: 

 (1) The current working matrix is divided into multiple blocks. For the matrix 

with size    , the block configuration is ⌈
 

 
⌉   , in which   is the number of rows 

per block. Note that after each pass, the row number of the current working matrix 

decreases. 

(2) Each block copies   rows from the working matrix into the block’s shared 

memory. These   rows merge into a 1D search array with the size   . 
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(3) In each block,   threads are launched and thread   performs comparison-

based maximum value search on element ,   ,    until the end of row. Similarly to the 

horizontal reduction, the element  ,   ,   , … are called the thread  ’s search range 

within the block. The maximum value within that search range is updated at element  .  

(4) Copy the search results (the first   elements of the 1D search array) back to 

the current search matrix. 

After each pass, the current working matrix shrinks from     to ⌈
 

 
⌉   . If 

⌈
 

 
⌉   , in which   is the pre-set maximum number of rows processed in the final 

reduction, the vertical reduction stops; otherwise, another pass starts. 

Figure 3.9 shows a follow-up example based on the result in Figure 3.8. Each 

block contains two horizontally compacted rows so the 5x3 matrix is divided into 

three blocks. In each block, a comparison-based maximum search, which is similar to 

the one in horizontal reduction, launches. After the 1
st
 pass, a 3x3 vertically reduced 

matrix (whose elements are marked by blank underscore lines) is generated. It still 

contains 9 elements, which exceeds the maximum allowed number of elements per 

block i.e. 6. After the 2
nd

 pass, a 2x3 vertically reduced matrix (whose elements are 

marked by blank underscore lines) is generated. It can fit into a single block and 

vertical reduction stops. 
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Figure 3.10 Example of vertical reduction 

3.3.4 Implementation of final reduction 

After the vertical reduction, the size of search matrix has been decreased so 

that the remained search matrix can fit into a single block’s block memory. The final 

reduction is a single-block, multi-thread operation to find the maximum value of the 

whole MQD matrix. 

The final reduction can be viewed as a variant of vertical reduction. It includes 

four steps: 



Texas Tech University, Jingqi Ao, May 2014 

40 

 (1) Only one block is used. Copy the result of vertical reduction to the block’s 

shared memory row by row and form a concatenated row. 

(2) Similarly to the vertical reduction,   threads are launched and thread   

performs comparison-based maximum value search on element  ,   ,    until the end 

of row. This step reduces the concatenated row to a compacted row with size  . 

(3) One thread (usually the thread    ) performs comparison-based 

maximum value search on the compacted row from step (2) and the global maximum 

value is stored at the first element of the compacted row. 

(4) Copy the final result back to the global matrix. 

Figure 3.11 shows an example of final reduction based on the result in Figure 

3.10. One block is used to process the remained 2x3 matrix. First, three threads are 

used to find and relocate maximum values within their search range. Second, one 

single thread is used to search through three remained maximum values. The final 

maximum value i.e. 45, is found as the result of the single-thread search.  

It can found that most parts of parallel Qmax search are multi-block, multi-

thread operations, which have high parallelism. The only single-block, multi-thread 

operation is the final reduction and the only single-thread operation is the step (3) in 

the final reduction. This parallelism decrease trend reflects the intrinsic of reduction 

operation, in which number of elements being operated are decreasing gradually. The 

influence of lacking of parallelism in the final phase of the maximum MQD search is 

neglectable. For example, for an MQD with 256x256, if 32 threads per block are used 

to process them, in the final stage, there are only 32 elements left for step (3), which 

means less than 0.1% MQDs are operated by a single thread. 
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Figure 3.11 Example of final reduction 

3.4 Parallel Element Encoding 

3.4.1 Elements in Parallel Element Encoding 

Parallel element encoding is to encode the generated B-LDWT+B coefficient 

to bitstream. This stage is the core stage of the whole algorithm. “Element” in parallel 

element encoding refers to the basic unit of encoding, which includes one MQD and 

four corresponding coefficients in one band at one level. In Figure 3.6, one element is 

(5; 28, -7, 35, -23) and another element is (2; -5, -4, 0, 1).  

The procedure of encoding elements is similar to the procedure of calculation 

MQD. In BCWT, they are combined so that high memory efficiency can be achieved. 

However, those two procedures are separated in PCWT, because of the limited 

resources available in CUDA. As shown in previous sections, most of stages in PCWT 
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are implemented in the unit of block. Because of limited resources of each block (e.g. 

limited shared memory, limited number of threads, etc.), a common trade-off is 

between number of threads that can be launched per block and complexity of task 

performed by each thread. If element encoding is combined to MQD calculation, one 

obvious consequence is the high data demand from each thread, in which data required 

by element encoding and data required by MQD calculation merge. Data from three 

levels i.e. the current level, the neighboring higher level, and the neighboring lower 

level, are involved in element-encoding-MQD-calculation-combined operation, which 

would causes fewer available threads than separated element encoding or MQD 

calculation operation. Operations in the current separated MQD calculation and 

element encoding stage need data only from two levels. In PCWT, the complexity of 

task is decreased to allow more parallelism. Besides that, the forward encoding 

sequence is an important reason to separate MQD calculation stage from element 

encoding stage. 

3.4.2 Element Encoding Sequence and Rules 

Figure 3.12 shows the encoding sequence of element encoding. 

The parallel element encoding stage has the following encoding sequence: 

(1) The level encoding sequence is from the highest level to the lowest level. 

(2) For the highest level, the band encoding sequence is top-left, top-right, 

bottom-left and bottom-right, i.e. LL band, HL band, LH band and HH band. For the 

rest of levels, the sequence is top-right, bottom-left and bottom-right, i.e. HL band, LH 

band and HH band. 

(3) Within a band, elements are encoded row by row from top-left corner to 

right-bottom corner. 

(4) For one element, the MQD in the element is encoded by higher-level 

corresponding MQD or Qmax first. If the element belongs to bands on the top level, 

the MQD is encoded by Qmax; otherwise the MQD (   ) is encoded by its 
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corresponding higher level MQD (⌊
 

 
⌋  ⌊

 

 
⌋). The four coefficients in the element are 

encoded by the MQD in the element second. The encoding sequence is top-left, top-

right, bottom-left and bottom-right. 

 

Figure 3.12 The encoding sequence of element encoding 

Different from sequential CPU encoding procedure, the result of parallel 

element encoding includes two arrays. One array, called element encoding bitstream, 

contains bitstreams of elements. Another array, called element encoding length record, 

records length of each element’s bitstream, i.e. the number of bits used by each 

element bitstream. 

Figure 3.13 shows element encoding with Qmax. The “8 7 6 5” and “5 4 3 2 1 

0” are bit index of coefficient’s absolute value and “S” represents the bit index for 

coefficient’s sign. 
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Element encoding with Qmax includes three steps: 

(1) The element’s MQD (“5”) is encoded by Qmax (“8”) 

(2) Four coefficients corresponding to the MQD are encoded in the sequence 

of “top-left, top-right, bottom-left and bottom-right”. i.e. “28, -7, 35, -23”. The 

absolute value is encoded first, and the sign is encoded second. 

(3) The generated bitstream (“0x 1723 A3AF”) is stored in element encoding 

bitstream and the number of bits used to encode this element, i.e. 32, is recorded in 

element encoding length record. 

 

Figure 3.13 Example of element encoding with Qmax 
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Figure 3.14 shows an example of element encoding with the higher-level 

MQD. Similarly, it contains three steps: 

(1) The element’s MQD (“2”) is encoded by higher-level MQD (“5”) 

(2) Four coefficients corresponding to the MQD are encoded in the sequence 

of “top-left, top-right, bottom-left and bottom-right” (“-5, -4, 0, 1”). 

(3) The generated bitstream (“0x 1A80 3”) is stored in element encoding 

bitstream and the number of bits used to encode this element, i.e. 20, is recorded in 

element encoding length record. 
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Figure 3.14 Example of element encoding with higher-level MQD 

Note that the bitstream of element encoded in Figure 3.14 only needs 20 bits 

but still uses a 32-bit container, which causes nearly 30% wasted space. In practice, 

this “waste of space” problem is common in element encoding stage and a further 

stage, called parallel group encoding (section 3.5), is used to alleviate the problem. 

3.4.3 Implementation of Parallel Element Encoding 

In PCWT implementation, each GPU hardware access is in the unit of 32-bit 

integer. For example, one coefficient or MQD is stored as one 32-bit integer and 

element bitstream of one element is stored as multiple 32-bit integers. Each read/write 

of coefficient, MQD or bitstream is in the unit of 32-bit integer. There is no 16-bit or 

8-bit access in our algorithm. The reason why the PCWT implement uses 32-bit access 

is because of the dynamic memory allocation restriction in CUDA [21]. In CUDA, 

only one dynamically allocated array is allowed in each kernel. Dynamic memory 

allocation allows the implementation to use the hardware resources efficiently. 

However, the unique dynamic array in the kernel restricts the data access format 

within the kernel. Since the coefficients are stored as 32-bit integers, the 

implementation access is determined as 32-bit. Multi-type data access is allowed in 

CUDA and is considered as part of future work. For example, coefficients can be 

accessed as 16-bit short integer, MQDs as 8-bit byte and bitstreams as 8-bit byte. 

Two implementation issues in parallel element encoding are needed to be 

solved: one is the opposite direction of indexing of coefficients and bitstreams. As 

shown in Figure 3.15, for coefficient or MQD 32-bit access, the bit index is from 

rightmost (index = 0) to leftmost (index = 31); for bitstream 32-bit access, the bit 

index is from leftmost (index = 0) to rightmost (index = 31). The other issue is the fast 

bit extraction and insertion. Coefficient and MQD needs fast bit extraction and bits 

from coefficient are extracted from high index to low index, i.e. from 31 to 0. 

Bitstream access needs fast bit insertion. Bits that are extracted from coefficients or 
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MQDs are inserted into a 32-bit integer of bitstream. The bit insertion is from low 

index to high index (i.e. from 0 to 31). 

To implement the fast bit extraction and insertion with opposite index 

directions of coefficient and bitstream, two groups of bit masks “Zero Index on the 

Left” (ZIL) group and “Zero Index on the Right” (ZIR) group are used. Each group 

contains 32 bit-masks, in which only one bit out of 32 bits are 1. 

Figure 3.15 shows ZIR and ZIL mask groups. ZIR group is used for fast bit 

extraction from coefficients and MQDs and ZIL group is used for fast bit insertion to 

bitstream. 

 

Figure 3.15 ZIR and ZIL groups and opposite index directions in MQD, 

coefficients and bitstream 

Note that parallel element encoding collaborates with the following parallel 

group encoding stage. A pre-group operation exists in parallel element encoding to 
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reallocate the generated bitstream of each element, based on the group encoding 

configuration, which will be explained in section 3.5.4.  

As mentioned in section 3.4.1, parallel element encoding is performed band by 

band. Each band is divided into multiple blocks. Each block processes multiple 

elements in one row. In each block, one thread processes one element. The shared 

memory of one block is divided into six or seven sections: 

(1) ZIL segment: contains ZIL group, 

(2) ZIR segment: contains ZIR group, 

(3) Optional higher-level MQD segment: contains  
 

 
  MQDs from higher 

level. For bands from the highest level, there is no such group. 

(4) MQD segment: contains     integer array, 

(5) Coefficient segment: contains     integer array (stored as     ), 

(6) Bitstream segment: contains 1D integer array. It is used to store the element 

bitstream. 

(7) Length record segment: 1D integer array. It is used to store the bit number 

of each element after encoded. 

For each block, the parallel element encoding includes four steps 

(1) Copy data from global memory to shared memory, including ZIL group, 

ZIR group, optional higher-level MQD array, MQD array and coefficient array. MQD 

and coefficient arrays correspond to   elements. 

(2) Clear the bitstream and length record group with 0 

(3) Launch   threads. Each thread encodes one element.  

First, the MQD is encoded. If MQD is -1, only MQD is encoded and it is 

encoded as 0. If MQD is not -1, the MQD is encoded as itself and it is encoded by 

Qmax or its corresponding MQD on the higher-level. The ZIR group is used to extract 
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bits from the MQD and ZIL group is used to write those bits to bitstream segment. The 

number of bits used to encode MQD is recorded to length record segment. 

Following MQD encoding, four coefficients of the current element are 

encoded, under the condition that the MQD is no less than Qmin. Qmin is a threshold 

for future PCWT lossy compression extension and currently it is set as 0 for lossless 

compression. Four coefficients are encoded in the order of top-left, top-right, bottom-

left and bottom-right. The absolute value of each coefficient is encoded, followed by 

the sign. The sign is encoded as 1 if positive, or 0 if negative. The number of bits used 

to encode coefficients is accumulated to length record array. 

Note that when the bitstreams are written back to the shared memory, each 

element has its unique offset within the bitstream section. This offset is determined by 

“int32_per_element”, which is calculated as ⌈  
      

  
⌉. 

(4) Copy the encoded bitstream and corresponding length record in shared 

memory to global memory. 

The pre-group operation happens in this step. As shown in Figure 3.16, 

elements within the same block do not necessarily belong to the same group. Only the 

blue section in block #(bkx, bky) belongs to the group #g. Bitstreams and length 

records of elements from different groups need to be placed into the element encoding 

bitstream and length record array, with different group-involved offset. Because the 

bitstream of one element can use multiple 32-bit integers, the copy of bitstream from 

shared memory to global memory is different from that of length record. 
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Figure 3.16 One element in band #bd, group #g is processed by thread t in block 

#(bkx, bky) 

To copy the bitstream to the global memory, each thread handles one 32-bit 

integer copy. The key point of copying one 32-bit integer from one block’s shared 

memory to the element encoding bitstream in the global memory is to find the 

correspondence between one 32-bit integer in the shared memory (called “source 

integer”) and one 32-bit integer in the global memory (“destination integer”).  

On the shared memory side, multiple threads can process bitstream from the 

same element. Bitstream of one element can have multiple 32-bit integers and one 

thread only handles one integer.  

The element that is processed by thread #t has element index within the block:  

element_id_in_block = t/int32_per_element,  

in which int32_per_element is number of 32-bit integers allocated for 

bitstream of one element. 

As shown in Figure 3.16, each block (marked as the red rectangle) processes 

multiple complete rows from multiple groups, one complete row from each group. The 

row marked by blue in Figure 3.16 is encoded into the bitstream in shared memory 

whose ends are also marked by blue in Figure 3.17. 

As shown in Figure 3.17, for thread #t, the source integer has the in-row int32 

index in the shared memory is:  
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int32_id_in_row = t – 

floor(element_id_in_block/G_C)*G_C*int32_per_element,  

in which G_C is the number of elements per row in one group. 

On the bitstream side, finding the destination integer is more complicated.  

The destination integer in element encoding bitstream is from the group with 

the global group index: 

group_id_global = floor(bky/G_R)*group_per_band_c + 

bkx*group_per_block + floor(element_id_in_block/G_C) + band_group_offset,  

in which group_per_band_c is the number of groups per row in one band, 

group_per_block is the pre-set number of group processed by one group. 

The group’s corresponding 32-bit integer offset is: 

group_offset_global = group_id_global*int32_per_group,  

in which int32_per_group is the number of 32-bit integers allocated in one 

group. 

The destination integer also has in-group integer offset: 

int32_offset_in_group = (bky-floor(bky/G_R)*G_R)*G_C*int32_per_element 

+ t – floor(element_id_in_block/G_C)*G_C*int32_per_element,  

in which G_R is the number of elements per column in one group. 

Overall, the 32-bit integer processed by thread #t in block (#bkx, #bky) should 

be copied to the element encoding bitstream with offset dest_int32_offset:  

dest_int32_offset = group_offset_global + int32_offset_in_group. 
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Figure 3.17 Relationship between one 32-bit integer in shared memory of block 

#bk and one 32-bit integer in the element encoding bitstream 

To copy the length record to the global memory, one thread handles one 32-bit 

integer, which is the length record of one element. 

On the shared memory side, as shown in Figure 3.18, for thread #t, in the 

shared memory, the source integer has the in-row int32 index is:  

int32_id_in_row = t – floor(t/G_C)*G_C*int32_per_element. 

On the global memory side, as shown in Figure 3.18, the destination integer is 

from the group with the global group offset in element encoding length record: 

group_offset_global = floor(bky/G_R)*group_per_band_c + 

bkx*group_per_block + floor(t/G_C) + band_group_offset. 

Overall, the 32-bit integer processed by thread #t in block (#bkx, #bky) should 

be copied to the element encoding length record with offset dest_int32_offset: 
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dest_int32_offset = group_offset_global + int32_id_in_row. 

 

Figure 3.18 Relationship between one 32-bit integer in shared memory of block 

#bk and one 32-bit integer in the element encoding length record 

Figure 3.19 shows an example of processing one block in element encoding 

and it is based on the numerical result in Figure 3.13. The whole coefficient and MQD 

bands have been divided into multiple blocks. Note it is the element encoding with 

Qmax. After step 1, ZIR and ZIL mask groups, MQDs, coefficients are copied into the 

block’s shared memory and bitstream and length record segments have been initialized 

with 0. After step 2, MQDs have been encoded by Qmax, which is provided as one 

kernel parameters. After step 3, all four coefficients are encoded by the MQD. Note 

the distance between coefficients from the same element reflects the row-wise storage 

of coefficient matrix. The generated bitstream is recorded into bitstream sengement 

and the accumulated bitstream length is recorded into length record segment, as the 

step 2 and 3 proceeds. After step 4, the bitstream and length record segments are 
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copied to element encoding bitstream and element encoding length record, with the 

calculated offsets. 

 

 

Figure 3.19 Example of processing one block in element encoding stage 

3.5 Parallel Group Encoding 

3.5.1 Group Encoding 

Group encoding is to encode bitstreams of elements that are from the same 

group into a new bitstream. As shown in Figure 3.14, there are numerous unused bits 

in element encoding result. Group encoding is to concatenate bits used by elements in 

the same group together and squeeze out unused bits. Group encoding can increase the 

compression ratio by eliminating unused bits among bitstreams of elements in the 
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same group. However, group encoding decreases the independence of elements, which 

means that elements in the same group can be only decoded in sequence. 

One issue in group encoding is the limited parallelism caused by sequentiality 

of bitstream of each group. If multiple threads are used to process one group, the race 

condition will cause the incorrect group encoding bitstream. 

 

Figure 3.20 Example of correct group encoding bitstream and incorrect group 

encoding bitstream caused by race condition 

As Figure 3.20 shows, The correct group encoding bitstream can be obtained 

by concatenating the second element bitstream to the end of first element bitstream. 

The second element bitstream involves two 32-bit integers: the first 32-bit integer 

contains part of the second element bitstream, with enough offset to avoid overwriting 

the first element bitstream stream. The second 32-bit integer contains remained bits of 

the second element bitstream, with necessary bit shift. 

Suppose the thread #1 handles the writing of the first element bitstream to the 

group element bitstream and the thread #2 handles the writing of the second one. It 
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can be found in Figure 3.20, no matter thread #1 or thread #2 executes first, the 

generated group encoding bitstream is incorrect. The error happens in the first 32-bit 

integer, which does not contains bits from both element bitstream #1 and element 

bitstream #2. The first 32-bit integer contains only bits from element bitstream #1 or 

#2 because of the overwriting between two threads. 

To avoid the overwriting problem, one group is processed by only one thread. 

However, even if the shared memory of one block can hold multiple completed 

groups, the actual thread number is limited by the number of groups processed by that 

block. For example, if the group size is 32x32, the shared memory of one block in 

computation capability 2.0 devices can hold maximum 10 groups, which only allows 

10 threads to process at the same time. To increase the parallelism of group encoding, 

one block is used to process large number of groups (e.g. 64 or 128 groups). With the 

limited shared memory of one block, the assumption that one block is able to hold all 

bitstreams of a large number of groups is usually invalid. In another word, one block 

can only take a large number of “partial” groups in one pass. For each group, multiple 

passes are needed to complete the processing. This solution is the trade-off result 

between high parallelism and limited hardware resource. 

Recently, the atomic operations [21] are introduced into GPGPU model to 

simplify the implementation of general purpose algorithms. The atomic operations are 

a type of thread-blocking operations and “atomic” reflects its “uninterruptable” 

characters. If atomic operations are used in our group encoding stage, only one thread 

can operate on a specific 32-bit integer exclusively. Other threads that are launched to 

operate the same integer have to wait until the current working thread finishes it work 

and release the access lock. However, atomic operation is slower than non-atomic 

operation because of mutual exclusive mechanism and atomic operations on the shared 

memory are simply to put in a queue to be sequential. For example, if two threads 

want to independently write several bits to the same 32-bit integer by using atomic bit-

operation OR, those two OR operations are executed sequentially, with the cost of 

releasing and retaining the access lock on the 32-bit integer between those two 



Texas Tech University, Jingqi Ao, May 2014 

57 

threads. In our current implementation, single-thread writing is simply executed twice 

to write bits to 32-bit integer, without any exclusive access cost. The atomic operation 

based implementation is not necessarily faster than the current implementation but it is 

still listed as the future work.  

3.5.2 Complete and incomplete group 

“Complete group” is defined as the fully occupied group and “Incomplete 

group” is defined as the group without full occupancy. Incomplete group usually 

appears near the right or bottom edge of each band. Figure 3.21 shows an example of 

complete and incomplete groups in one band.  

 

Figure 3.21 Complete and incomplete groups for MQD band 

Handling incomplete group is critical for achieving high compression ratio. 

Simply extending the size of band by padding place-holders (such as 0) to eliminate 

incomplete groups introduces unused elements, which are irrelevant to the DWT and 

should not be encoded. This cost increases with the size of group because more place-

holders are needed to form a larger complete group. 

In our implementation, missing elements in incomplete group are handled by 

both element encoding stage and group encoding stage. In element encoding stage, 
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missing elements still occupy their pre-allocated spaces in element encoding bitstream 

but their corresponding elements in element encoding length record are set to 0. Figure 

3.21 demonstrates an example of handling the incomplete group #(n+1). There are two 

missing elements per row in group #(n+1), which still occupy empty spaces in element 

encoding bitstream. However, their corresponding elements in element encoding 

length record are 0.  

In group encoding stage, missing elements are eliminated based on their zero-

use of bits. Those missing elements do not occupy any space in the group encoding 

bitstream so that they do not have any negative effect on the compression ratio.  

 
Figure 3.22 Handling missing elements in element encoding stage 
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3.5.3 Complete and incomplete blocks 

In group encoding, each block processes multiple groups. However, the 

number of groups might not be the multiple of block number. For example, if there are 

60x60 groups in a specific band and each block processes 128 groups, the group 

encoding stage needs 29 blocks, in which 28 blocks are “complete blocks” and the 

remaining block is a “incomplete block”. Each complete block processes 128 groups 

and the incomplete block processes 16 groups. Based on the complete and incomplete 

blocks, the group encoding stage can be divided into two phases: the first phase is to 

run all complete blocks by one CUDA kernel and the second phase is to run the 

remaining incomplete block by another CUDA kernel.  

The reason why the group encoding stage has two phases is to decrease the 

divergence between blocks within the same kernel. If both complete and incomplete 

blocks are included in the same kernel, in-kernel condition branches, which are used to 

determine how many actual groups are needed to process by a specific block, is 

unavoidable. Those branches introduce additional complexity and overhead to the 

kernel.  

3.5.4 Pre-group operation in Element Encoding Stage 

Pre-group operation is to reallocate element bitstreams in element encoding 

bitstream so that bitstreams belonging to the same group can be clustered.  

Figure 3.23 shows the effect of pre-group operation on element encoding 

bitstream. As mentioned in element encoding stage (section 3.4.3), elements in the 

same CUDA block do not necessarily belong to the same group. In this example, each 

group has size 10x100 and one block processes two rows of elements i.e. one row 

from each group. Block #0 processes elements 000 to 099 in group #n and elements 

000 to 099 in group #(n+1). Block #1 processes elements 100 to 199 in group #n and 

elements 100 to 199 in group #(n+1). Without pre-group operation, bitstreams from 

group #n and group #(n+1) are interlaced. If one block in group encoding stage is set 

to process 8 elements from each group in one pass, for pass #p, bitstreams of element 

096, 097, 098, 099, 100, 101, 102, 103 are located in two separate sections in element 
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encoding bitstream and two global memory accesses are required when group 

encoding is performed. However, with pre-group operation, those bitstreams are 

located with consecutive addresses and only one global memory access is needed, 

which makes the encoding operations on pre-grouped element encoding bitstream 

faster. Pre-group operation in element encoding stage enhances the performance of 

group encoding stage. 

 

Figure 3.23 Comparison between element encoding bitstream with and without 

pre-group operation 

3.5.5 Implementation of Parallel Group Encoding 

The shared memory structure of one block in parallel group encoding, which 

includes six parts: 

(1) ZIL segment: contains ZIL group 
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(2) Group offset segment: 32-bit offset of each group processed the block 

(3) Element encoding bitstream segment: contains partial bitstream from 

element encoding bitstream 

(4) Element encoding length record segment: contains partial length record 

from element encoding length record 

(5) Group encoding bitstream segment: contains generated partial bitstream 

from group encoding 

(6) Group encoding length record: contains generated “partial” length record 

from group encoding 

Figure 3.23 shows the main steps in group encoding stage. The group encoding 

includes multiple passes.  

The core of group encoding is implemented as a double-loop. The outer loop is 

to control the number of passes for each group. The number of passes for each group 

is determined by the number of elements processed in each pass. For example, if for 

each 32x32 group, one pass processes 4 elements, the number of passes is 256. 

Therefore the outer loop runs 256 times. 

In outer loop, a partial element encoding bitstream and element encoding 

length record are copied to the shared memory, to form element bitstream segment and 

element length record segment, respectively. One 32-bit integer is also copied from 

group encoding bistream into the beginning of group bitstream segment. In some 

cases, the size of the partial group bitstream generated in one pass is not the multiple 

of 32-bit integers. In order to concatenate the bitsteam to be generated from the 

following pass to the already-generated bitstream correctly, one 32-bit integer at the 

end of processed group encoding bitstream needs to be read back for the current pass. 
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Figure 3.23 Main steps in group encoding stage 

Parameter write_bit_offset_one_iteration is used to indicate the position of the 

first bit to write in the current pass. And it is calculated by: 

write_bit_offset_one_iteration = group_length – floor(group_length/32)*32, in 

which group_length is the accumulated bit number of already-processed element 

bitstreams. 

The inner loop is to merge element bitstreams fetched in the current pass into 

the single bitstream of the group. Each iteration of inner loop processes one element 

bitstream. For example, if one pass processes four elements for one group, the number 

of iteration of inner loop is four.  
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The processing of one element is similar to that in element encoding stage, in 

which bits from one element in element bitstream segment are extracted and written to 

the group bitstream segment. The difference is that in element encoding stage, both 

ZIL and ZIR groups are used. However, in group encoding stage, both source and 

destination bits all have zero index at the leftmost end so that only ZIL group is used. 

After all elements assigned for the one inner loop iteration are processed, the 

generated group bitstream segment is copied back to group encoding bitstream in the 

global memory. 

After all elements in one group are processed i.e. the outer-loop is completed, 

the generated group length record segment is copied back to group encoding length 

record in the global memory. 

3.5 Sequential Bitstream Output 

3.5.1 Sequential Output 

The previous parallel group encoding stage provides two data structures: group 

encoding bitstream that includes group bitstreams and group encoding length record 

that contains lengths of group bitstreams. The sequential output stage is to combine 

those group bitstreams with group bitstream lengths, into a new bitstream called the 

final bitstream and output the final bitstream to a file on storage devices. 

Each group bitstream and its corresponding group bitstream length are 

combined first. The group bitstream length is stored in front of group bitstream, which 

allows the fast location of a specific group. Then those combined group bitstreams are 

merged on the byte (8-bit) level, not on bit level, to form the final bitstream. 

Nevertheless, mergence on the bit level can provide further compression, on the top of 

element encoding and group encoding stages. However, bit-level mergence 

complicates the extraction of bitstreams from different groups in the decoding 

procedure. Bytes need to be split and shifted before bitstreams are ready for decoding. 

Mergence on the byte level can avoid those bit operations. Mergence on byte level can 

also avoid the bit wasting that is introduced by combination on 32-bit level. Group 
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bitstreams and their length are stored in the unit of 32-bit integer, as the result of 

element encoding and group encoding stages. Directly store all 32-bit integers will 

unavoidably introduce unused bits at the end of each combined group bitstream 

because no matter 1 bit or 31 bits are actually used, 32 bits are occupied. Mergence on 

byte level is the tradeoff between compression ratio and decoding complexity. 

3.5.2 Implementation of Sequential Output 

Besides the final bitstream, there are at least six parameters about the 

compressed image and compression procedure, which need to be written to the final 

output file: 

(1) Qmax: is required to decode bands on the highest level.  

(2) Qmin: currently is set as 0. 

(3) dwt_level: the actual DWT levels performed by PCWT, which is required 

for inverse B-LDWT+B in decompression procedure. 

(4) element_per_group_R: the number of rows in one group 

(5) element_per_group_C: the number of columns in one group 

(6) channel_number: currently not used. 

Six parameters are written to the file first, followed by the final bitstream. The 

wiring of the final bitstream to file is implemented as a loop. In each loop, the group 

bitstream and its length of one group are output in two steps:  

(1) The first 32 bits are the group bitstream length, which is obtained from 

length_record_group 

(2) The number of effective bytes of the group bitstream is calculated by: 

(length_record_group*8 + 7)/8 and those bytes from each group bitstream are written 

to the output file.  
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CHAPTER IV  

PCWT DECOMPRESSION PROCEDURE  

Decompression procedure is to read files that contain PCWT bitstream and 

restore the compressed images. It includes three main stages: sequential bitstream 

input, sequential decoding, and parallel inverse B-LDWT+B. 

4.1 Sequential Bitstream Input 

4.1.1 Sequential Input 

Sequential bitstream input is to read compressed image file in bytes and 

reallocate those bytes to form the proper data structures for the sequential decoding 

stage, which will be explained in details in the following section. 

The structure of compressed image file is defined in section 3.5.2 and it 

contains two major parts:  

(1) Metadata of the image and compression procedure 

(2) Group bitstreams. 

The part (1) is critical for following stages in the decompression procedure. 

The part (2) has the similar memory structure to the final bitstream in Section 3.5, 

whose memory spaces need to be pre-allocated. The pre-allocation of final bitstream 

requires two parameters:  

(a) int32_per_group: the number of 32-bit integers per group and 

(b) group_number_total: the total number of groups processed in the 

decompression procedure. 

Note that both parameters can be derived from the metadata from part (1). 

4.1.2 Implementation of Sequential Bitstream Input 

The sequential bitstream input includes three steps: 

(1) Read the metadata of the image and compression procedure: these metadata 

are the ones written in Section 3.5.2, including: Qmax, Qmin, dwt_level, 
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element_per_group_R, element_per_group_C and channel_number. Each parameter is 

a 32-bit integer. 

(2) Calculate the codec properties, which will be explained in section 4.4 to 

ensure the decompression procedure is strictly inversed to the compression procedure. 

Based on the obtained codec properties, necessary memory allocations are performed, 

including: the sequence decoding bitstream, the sequence decoding length record, 

MQD matrix for sequential decoding stage and two GPU 2D arrays for inverse B-

LDWT+B transform. 

 (3) Read group bitstreams into the group sequence decoding bitstream and 

their corresponding bit number into sequence decoding length record. 

 

4.2 Sequential Decoding 

4.2.1 Sequential decoding and its comparison with encoding stages 

Sequential decoding is to decode the sequence decoding bitstreams, with the 

help of sequence decoding length record, to re-generate the B-LDWT+B coefficient 

matrix. The generated coefficient matrix will be used as the input matrix for inverse 

2D B-LDWT+B (section 4.3) to restore the compressed image. 

Different from the compression procedure that contains two encoding stages 

i.e. element encoding and group encoding stages, the decompression procedure only 

contains one decoding stage i.e. the sequential decoding stage. In sequential decoding 

stage, sequential decoding bitstream is directly decoded to 2D coefficient matrix. 

There is no intermediate bitstream, such as the element encoding bitstream in the 

compression procedure, in decompression procedure.  

MQD matrix is still involved in the sequential decoding as the auxiliary matrix, 

which means the sequential decoding stage needs to decode two matrices, coefficient 

matrix and MQD matrix from the sequential decoding bitstream. 
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The decoding stage is chosen as sequential because strong dependencies within 

the bitstream impede performance of any parallel decoding stage: (1) Level-

dependency, i.e. the decoding of lower-level bands depends on the completion of 

decoding of higher-level bands, limits the parallelism among different levels; (2) 

Element dependency, i.e. elements within the same group can only be decoded 

sequentially, limits the parallelism within each band. 

Similarly to the element encoding stage, the basic unit in the sequential 

decoding stage is the element, which includes one MQD and four coefficients. The 

sequential decoding stage has the same level/band/group/element processing sequence 

as that of compression procedure. 

(1) The decoding is from the top level to the lowest level 

(2) Within each level, bands are decoded in sequence of (LL), HL, LH and 

HH.  The sequential decoding stage has two types of decoding: decoding element with 

Qmax and decoding element with higher-level MQD, depending on the band being 

decoded. 

(3) Within each band, groups are decoded sequentially from the group on top-

left corner to the group on bottom-right corner. 

(4) Within each group, elements are decoded sequentially from the element on 

top-left corner to element on the bottom-right corner. 

Figure 4.1 shows an example of decoding one element with its corresponding 

higher-level MQD. The bitstream is the same one used in Figure 3.20. The decoding 

procedure contains two parts: 

(1) The element’s MQD, i.e. 2, is decoded from one group bitstream by higher-

level MQD, i.e. 5. 

(2) Four coefficients are decoded with the decoded MQD from the same 

element bitstream in the sequence of top-left, top-right, bottom-left and bottom-right 
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coefficients. For each coefficient, the absolute value is encoded first, and the sign is 

encoded second 

The decoded MQD and coefficients can be verified by the numerical example 

in Figure 3.14. 

 

Figure 4.1 Example of decoding one element with the corresponding higher-level 

MQD. 

 

Figure 4.2 Example of decoding one element with QMAX. 



Texas Tech University, Jingqi Ao, May 2014 

69 

Figure 4.2 shows an example of decoding one element with Qmax. Similarly, it 

contains two parts: 

 (1) The element’s MQD i.e. 5, is decoded from one group bitstream by Qmax, 

i.e. 8. 

(2) Four coefficients are decoded from the same bitstream in the sequence of 

top-left, top-right, bottom-left and bottom-right elements, i.e. 28, -7, 35, -28. 

The decoded MQD and coefficients can be verified by the numerical example 

in Figure 3.13. 

4.2.2 Implementation of sequential decoding 

In the sequential decoding stage, the decoding has four levels (section 4.2.1). 

Figure 4.3 shows the implementation of sequential decoding. Note that level decoding 

and band decoding are merged because each band has its unique level and more 

importantly, each band has its unique offsets and sizes, which are sufficient for placing 

decoded MQDs and coefficients in the correct positions. 
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Figure 4.3 The implementation of sequential decoding 

Each band has its unique offset and size, which can be obtained from 

corresponding codec properties (section 4.4.3) such as coeff_band_offset_list, 

coeff_band_size_list, mqd_band_offset_list and mqd_band_size_list. 

Each group within one band has its unique offset and size, which can be also 

obtained from corresponding codec properties (Section 4.4.3), such as 

mqd_group_number_per_band_list and group_size. 

Each element within one group has its unique position, which cannot be 

obtained from codec properties directly. To decode one element in group decoding, its 

in-group element index can be obtained by accumulating the index from 0 when group 

encoding starts. 
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After the element index in the group is obtained, based on the valid group 

column number valid_group_size_c, the element position within the group can be 

determined by: 

element_idx_r_in_group = element_idx_in_group/valid_group_size_c 

element_idx_c_in_group = element_idx_in_group - element_idx_r_in_group* 

valid_group_size_c, in which element_idx_r_in_group and element_idx_c_in_group 

are the element row index and element column index within the group, respectively. 

The valid_group_size_c is used instead of pre-defined group size is because of 

the group encoding stage in the compression procedure (section 3.5). For complete 

group, valid_group_size_c equals the pre-defined group column number. However, for 

an incomplete group, valid_group_size_c equals the actual column number in that 

group, because the missing elements are not included in sequential decoding bitstream. 

After element_idx_r_in_group and element_idx_c_in_group are obtained, the 

element’s MQD position is element_idx_r_in_group and element_idx_c_in_group 

with necessary band and group offsets. Coefficients’ positions are 

(element_idx_r_in_group*2, element_idx_c_in_group*2),  

(element_idx_r_in_group*2 + 1, element_idx_c_in_group*2), 

(element_idx_r_in_group*2, element_idx_c_in_group*2 + 1), 

and (element_idx_r_in_group*2 + 1, element_idx_c_in_group*2 + 1), with necessary 

band and group offsets. 

4.3 Parallel Inverse B-LDWT+B 

Parallel inverse LDWT is to restore the compressed image from decoded 

LDWT coefficients. As the inverse operation of parallel forward B-LDWT+B, inverse 

B-LDWT+B includes two phases: parallel inverse horizontal 2D B-LDWT+B and 

parallel inverse vertical 2D B-LDWT+B, with embedded Clustering-to-Interlacing 

(C2I) operation are performed.  
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C2I operation is the inverse operation of the I2C operation in forward 

transforms. The decoded coefficient matrix is in the cluster form, which is the result of 

the I2C operation in the compression procedure. To perform inverse LDWT properly, 

the clustered L- and H-components needs to be interlaced and C2I operation is to 

generated interlaced row or column before horizontal or vertical inverse transform is 

performed. 

Parallel inverse 2D B-LDWT+B is also block-based, thus it has similar 

configuration to parallel forward 2D B-LDWT+B. Each block of parallel inverse 

horizontal 2D B-LDWT+B processes a partial row and each block of parallel inverse 

vertical 2D B-LDWT+B process multiple partial columns. However, there are several 

differences between parallel forward and inverse transforms: 

(1) In inverse transform, vertical inverse transform is performed before 

horizontal inverse transform, which is different from forward transform, in which 

horizontal forward transform is performed before the vertical one. 

(2) In inverse transform, C2I operation is performed before any L- or H-

component calculation is performed. In forward transform, I2C operation is performed 

after both L- and H-component calculation is finished. 

(3) In inverse transform, the “over-computed” element is  [  ], which is 

calculated as a L-component and is used to calculated the H-component  [    ]. In 

forward transform, the “over-computed” element is  [  ], which is calculated as a H-

component and is used to calculate the L-component  [ ]. 

Figure 4.4 shows an example of 1D inverse B-LDWT+B. It is based on the 

numerical example in Figure 3.1. 
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Figure 4.4 Example of 1D inverse B-LDWT+B 

4.3.1 Implementation of Vertical 2D B-LDWT+B 

Vertical inverse 2D B-LDWT+B is to perform 1D inverse B-LDWT+B on 

columns of the decomposition result on any level. Vertical inverse 2D B-LDWT+B 

has the similar block configuration to the vertical forward one.  

The complete Vertical 2D B-LDWT+B includes six steps:  

(1) The input matrix, i.e. the decomposition result on any level which includes 

four bands LL, HL, LH and HH, is divided into blocks. One block contains multiple 

partial columns. For input matrix size    , the block configuration is ⌈
 

 
⌉  ⌈

 

 
⌉, in 

which   and   are number of elements processed by one block in horizontal and 

vertical direction, respectively. 

(2) Blocks are read from GPU global memory (global 2D array #1) into the 

blocks’ corresponding shared memory. Embedded C2I operation is implemented by 

two global memory reads. One is for L-components and the other is for H-

components. 
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Similar to the 2D forward vertical B-LDWT+B, for each block, 4 extra rows of 

elements outside the block are also read for boundary extension.  

(3) Optional boundary flipping is performed on one end of the shared memory, 

if the block is boundary block. 

(4) Perform L-step of 1D B-LDWT+B. 

(5) Perform H-step of 1D B-LDWT+B. 

(6) Copy the generated result back to global memory array #2. 

4.3.2 Implementation of Horizontal Inverse 2D B-LDWT+B 

Horizontal inverse 2D B-LDWT+B is to perform 1D inverse B-LDWT+B on 

each row of the result of vertical inverse 2D B-LDWT+B. It includes six steps:  

(1) The input matrix, i.e. the result from inverse vertical 2D B-LDWT+B, is 

divided into blocks. One block contains a part of row. For input matrix size    , the 

block configuration is   ⌈
 

 
⌉, in which   is the number of element processed by one 

block. 

(2) Blocks are read from GPU global memory (global 2D array #2) into the 

blocks’ corresponding shared memory. Embedded C2I operation also is performed. 

(3) Optional boundary flipping is performed on one end of the shared memory, 

if the block is boundary block.  

 (4) Perform L-step of 1D inverse B-LDWT+B. 

(5) Perform H-step of 1D inverse B-LDWT+B. 

(6) Copy the generated result back to global memory array #1. 

4.4 Codec Properties Calculation 

4.4.1 Codec Properies 

Codec properties are defined as all the necessary parameters used in PCWT 

compression and decompression procedure. 
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Codec properties can be classified into four categories: 

(1) Coefficient matrix related properties: 

(a) Coefficient level offset  

(b) Coefficient level effective size  

(c) Coefficient level extended size  

(d) Coefficient band offset  

(e) Coefficient band effective size  

(f) Coefficient band extended size  

 (2) MQD matrix related properties: 

  (a) MQD band offset  

  (b) MQD band effective size  

  (c) MQD band extended size  

 (3) Element encoding related properties: 

  (a) int32_number_per_element: number of 32-bit integers per element  

 (3) Group encoding related properties: 

  (a) Group number per band 

  (b) Total group number 

  (c) int32_number_per_group: number of 32-bit integers per group  

  (b) Group bitstream offsets 

 (4) DWT related properties: 

  (a) The final number of decomposition levels in forward B-LDWT+B 

  (a) Total band number 
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4.4.2 Codec Properties Calculation in Compression Procedure 

Note that those codec properties are obtained from different stages because 

there are dependencies between some of properties. 

In compression procedure, following parameters are required from users: 

(1) Input image size (image_size_R, image row number and image_size_C, 

image column number) 

(2) User preferred decomposition level (user_dwt_level) 

(3) Group size (group_size_R, number of rows per group and group_size_C, 

number of columns per group) 
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Figure 4.5 Calculation of level size, level offset, band size and band offset 
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Figure 4.5 shows calculation of size and offset of each level and band. Note the 

arrows means the dependencies between different properties. Properties without 

dependencies can be calculated independently. 

(1) MADL: the detailed calculation has been describe in section 3.1.2, which 

depends on the minimum row number of LL band (LL_MIN_R), the minimum column 

number of LL band (LL_MIN_C), the input image row number (image_size_R) and the 

input image column number (image_size_C). 

(2) dwt_level_final: the actual B-LDWB+B decomposition level number used 

in B-LDWT+B (section 3.2), which is the minimum value between MADL and user 

preferred decomposition level number dwt_level_user. 

(3) band_number_final: the total number of bands generated by B-LDWT+B, 

which is calculated by: 

band_number_final = dwt_level_final*3 + 1; 

(4) coeff_level_effective_size: the effective level size of each decomposition 

level, which is described in section 3.1.2. 

(5) coeff_band_effective_size:  the effective band size of each band, which is 

described in section 3.1.2. 

(6) mqd_band_effective_size: the effective band size of MQD matrix, which is 

described in section 3.1.2. Note the calculation is from the lowest level to the highest 

level for (4) to (6). 

(7) mqd_band_extended_size: the extended band size of MQD matrix, which is 

calculated by: 

mqd_band_extended_size [i] = mqd_band_effective_size[i], i = 0…3 

mqd_band_extended_size [i] = mqd_band_extended_size[i-3], i = 4,…#bn – 1. 

(8) coeff_band_extended_size: the extended band size of coefficient matrix. 

coeff_band_extended_size [i] = mqd_band_extended_size[i]*2, i = 0,..,#bn – 1. 
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(9) coeff_level_extended_size: the extended level size of coefficient matrix.  

coeff_level_extended_size [j] = coeff_level_extended_size [3*(dwt_level_final -

j)]*2, j = 0,..,#d-1.  

(10) coeff_level_offset: the offset of each coefficient level. Coefficient level 

offsets are used to normalize the memory fetching of boundary extension in LDWT 

forward and inverse transform, which has be explained in section 3.1.3. The current 

LDWT algorithm requires level offset to be equal to 2 in both horizontal and vertical 

direction. 

(11) coeff_band_offset: the offset of each coefficient band. Coefficient band 

offsets are introduced to ensure the correctness of fetching any individual band’s 

element. It is determined by both level offsets and band extended size. 

Coefficient band offset is used to cluster L- and H-components after they have 

been calculated. Since the coefficient band can be “over-sized” i.e. the sum of sizes of 

L- and H-band can be larger than its original level size, the band’s offset cannot be 

directly derived from the level size. Use the same example demonstrated in Figure 3.2, 

as Figure 4.6 shows, if the band’s row offset at Lv5 was set to 129 rather than 130 

based on the level row size, in I2C operation of horizontal 2D B-LDWT+B stage, the 

end of L-band will overwrite the head of H-band. To avoid possible overwriting, the 

band offsets is derived from coefficient level offset and band extended size: 

For top-right band: 

coeff_band_offset_R[i] = coeff_level_offset_R; 

coeff_band_offset_C[i] = coeff_level_offset_C + 

coeff_band_size_extended_C[i], 

i = 1,4 …, #bn-3. 

For buttom-left band: 

coeff_band_offset_R[j] = coeff_level_offset_R + 

coeff_band_size_extended_R[j], 
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coeff_band_offset_C[j+1] = coeff_level_offset_C; 

i = 2,5 …, #bn-2. 

For buttom-right band: 

coeff_band_offset_R[k] = coeff_level_offset_R + 

coeff_band_size_extended_R[k], 

coeff_band_offset_C[k] = coeff_level_offset_C +  

coeff_band_size_extended[k], 

i = 3,6 …, #bn-1. 

For LL band: 

coeff_band_offset_R[0] = coeff_level_offset_R, 

coeff_band_offset_C[0] = coeff_level_offset_C. 

coeff_band_offset_R is the row offset along the vertical direction and 

coeff_band_offset_C is the column offset along the horizontal direction. 
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Figure 4.6 Effect of coefficient band offset in B-LDWT+B 

(12) mqd_band_offset_list: a list containing offsets of each MQD band. MQD 

band offsets are introduced to ensure the correctness of fetching any individual band’s 

element. Different from coefficient band offsets, MQD band offsets is only determined 

by MQD band extended size. 

For top-right band: 

mqd_band_offset_R[i] = 0; 

mqd_band_offset_C[i] = mqd_band_size_extended_C[i], 

i = 1,4 …, #bn-3. 

For buttom-left band: 

mqd_band_offset_R[j] = mqd_band_size_extended_R[j], 
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mqd_band_offset_C[j+1] = 0; 

j = 2,5 …, #bn-2. 

For buttom-right band: 

mqd_band_offset_R[k] = mqd_band_size_extended_R[k], 

mqd_band_offset_C[k] = mqd_band_size_extended[k], 

k = 3,6 …, #bn-1. 

For LL band: 

mqd_band_offset_R[0] = 0, 

mqd_band_offset_C[0] = 0. 

Similarly, mqd_band_offset_R is the row offset along the vertical direction and 

mqd_band_offset_C is the column offset along the horizontal direction. 

 (13) dwt_2dArray_size and dwt_2dArray_offset: the size and offset of GPU 

2D array allocated in GPU’s global memory and the horizontal and vertical offset of 

data within the GPU 2D array. 

dwt_2DArray_offset = 2 

dwt_2DArray_size = 2*coeff_band_size_extended[#bn-1] + 4 

After Qmax is obtained (section 3.3), as Figure 4.7 shows, following codec 

properties are calculated for bitstream-related operations: 

 

Figure 4.7 Bitstream related codec properties 
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(1) int32_per_element: the number of 32-bit integers allocated for bitstream of one 

element. It is calculated by  

ceil((Qmax + 1)*5/32),  

in which ceil(x) is the ceiling function that provides the nearest integer no less 

than x. 

(2) int32_per_group: the number of 32-bit integers allocated for bitstream of one 

group. It is calculated by: 

 int32_per_element*group_size_R*group_size_C 

(3) mqd_group_number_per_band_list: a list with #bn integers to record the number 

of groups per band. Note this list is used in both element encoding stage (section 3.4) 

and group encoding stage (section 3.5). 

 

4.4.3 Codec Properties Calculation in Decompression Procedure 

The codec properties calculation in decompression procedure is similar to that 

in compression procedure. The difference is in decompression procedure, all metadata, 

such as image size, group size, Qmax, etc are obtained together at the beginning stage 

of decompression procedure (Section 4.1). As shown in Figure 4.8, the codec 

properties can be calculated in one step, rather than separated in two steps as in 

compression procedure. 
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Figure 4.8 The codec properties calculation in decompression procedure 



Texas Tech University, Jingqi Ao, May 2014 

85 

CHAPTER V  

COMPARATIVE EXPERIMENTAL RESULTS OF PCWT AND 

JPEG-XR  

The purpose of our PCWT algorithm is to achieve fast compression while 

maintaining a decent compression ratio. JPEG2000  is not chosen to compare with our 

algorithm even though it is wavelet transform based because of its high complexity 

and the corresponding low compression speed [25]. Our PCWT algorithm is compared 

with CPU version JPEG-XR compression algorithm [26], which is much faster and 

still achieved a competitive compression effect [27]. 

JPEG-XR algorithm is a Photo-transform based algorithm [26]. Similar to 

PCWT, its compression procedure can be divided into two phases: transform phase 

and encoding phase. The current standard only defines the decompression procedure 

with details [28], but the corresponding compression procedure is not difficult to  

derive as shown in Figure 5.1. 

 

Figure 5.1 The workflow diagram of JPEG-XR algorithm 

Compared  to JPEG-XR, PCWT has following differences: 

(1) PCWT uses a different transform. JPEG-XR uses Photo transform but 

PCWT uses B-LDWT+B. 

(2) PCWT lossless implementation does not have quantization. JPEG-XR’s 

quantization should be disabled in lossless mode. 

(3) PCWT does not have coefficient prediction. Coefficient prediction is to 

increase encoding efficiency, with the assumption that relatively high similarity 

between blocks exists. Corresponding coefficients from different blocks have similar 
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values and can be encoded efficiently by entropy encoding. Coefficient prediction is 

not implemented in PCWT because the entropy encoding is not used in PCWT. 

(4) PCWT has different coefficient scanning order than JPEG-XR. JPEG-XR 

has a similar Zig-Zag scanning order like JPEG because of the intrinsic low- and high-

frequency component pattern in the result of Photo transform. The result of B-

LDWT+B transform does not have that pattern so coefficients are scanned line by line. 

(5) PCWT does not use entropy encoding. PCWT utilized MQD-based 

encoding, which has much higher parallelism than entropy encoding. Entropy 

encoding is implemented by searching the bitstream and replacing target patterns with 

new strings based on entropy coding table.  One significant difficulty for 

implementing parallel entropy encoding is that entropy encoding prefers complete 

bitstream rather than a section of that bitstream so that it can locate as many target 

patterns as possible and further achieve high compression efficiency. However, this 

“search one whole bitstream” cannot lead to high parallelism. MQD-based encoding is 

highly localized and can achieve higher parallelism than entropy encoding. 

Our experimental PC equips Intel i7 2.93GHz CPU with 6GB memory. The 

GPU hardware is Nvidia GTX570 on the same PC.   

JPEG-XR compression algorithm is implemented by using Microsoft .NET 4.0 

framework [29]. PCWT compression algorithm is implemented by using native C++ 

(host-side) and CUDA C 4.0 (device-side).Both algorithms are compiled into the 

release mode executable file by Microsoft Visual Studio 2010. Both executable files 

run on Microsoft Windows 7 64-bit. 

The test is divided into two categories: compression procedure and 

decompression procedure. The starting point of compression procedure is that the raw 

image is already in host (CPU) memory and the ending point is the generated 

bitstream has been written on the host harddisk. The starting point of decompression 

procedure is that there is a compressed file on the host harddisk and the ending point is 

to the image has been restored in the host memory. Correspondingly, there are 
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compression running time and decompression running time. It is noted that both 

running times include the time for data transfer between host and device and memory 

allocation on both GPU and CPU. Those full-scale running times can provide a 

comprehensive measurement of our algorithm and provide an accurate comparison 

between our algorithm and JPEG-XR algorithm.  

As listed in Table 5.1, twenty publicly accessible medical images have been 

tested with PCWT and JPEG-XR algorithms. All images are divided into four 

categories based on their pixel size: 2~5 Mega Pixels (MP) from Img #1 to #5, 5~10 

MP from Img #6 to #10, 10~20MP from Img #11 to #15, and more than 20MP from 

Img#16 to #20. All images are transformed to 8pp gray-level image to obtain the 

baseline performance of both algorithms. Figure 5.2 shows four test images. One 

image from each category. 

PCWT and JPEG-XR are compared in compressed size overhead in terms of 

compression ratio and encoding/decoding acceleration in terms of running time. 

For compressed size overhead (generally PCWT file’s size is larger than 

JPEG-XR’s file), each image   in one category has a compression ratio (CR) from 

PCWT       ( ) and another CR from JPEG-XR      ( )        . The size 

overhead of PCWT comparing to JPEGXR can be calculated as: 
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in which  ( ) and  ( ) are the image  ’s width and height, respectively. 

       and          are compression ratios from PCWT and JPEG-XR, 

respectively. 

Similarly, the acceleration of PCWT comparing to JPEG-XR can be calculated 

as: 
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in which      ( ) and    ( ) are image  ’s encoding/decoding running time 

from JPEG-XR and PCWT, respectively. 

Table 5.1 Test image information 

 Width (pixel) Height (pixel) 

2~5 MP   
M2to5_01 2133 2133 

M2to5_02 2048 2500 

M2to5_03 1800 1643 

M2to5_04 1600 1322 

M2to5_05 1728 1638 

5~10 MP   
M5to10_01 2876 2894 

M5to10_02 2048 2500 

M5to10_03 3744 1640 

M5to10_04 2241 2492 

M5to10_05 2400 3020 

10 ~ 20 MP   
M10to20_01 4280 3520 

M10to20_02 5352 3000 

M10to20_03 4000 3000 

M10to20_04 3543 3543 

M10to20_05 3047 3386 

> 20 MP   
M_Larger20M_01 6144 4990 

M_Larger20M_02 6098 4404 

M_Larger20M_03 7024 5532 

M_Larger20M_04 6000 5290 

M_Larger20M_05 6070 4104 
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Figure 5.2 Four sample images used in the comparison 

It is noted that the storage size overhead and acceleration are calculated with 

weights. The weighted comparison puts more weights on larger images’ results, which 

reflects our criterion that a specific size overhead or acceleration on large images is 

usually more significant (for size overhead, “worse”, for acceleration, “better”) than 

the same number on small images. 

Table 5.2 lists the compression ratio (“CR”), compression running time 

(“Comp Time”) and decompression running time (“Decomp Time”) of all 20 images 

with PCWT and JPEG-XR. Table 5.3 shows the image-size-weighted compression 

and compression acceleration brought by PCWT and corresponding image-size-
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weighted size overhead.  From Table 5.2 and Table 5.3, it can be found that PCWT is 

suitable for processing large image. For testing images with size larger than 20MP, 

PCWT can achieve more than 6 times compression speed faster than JPEG-XR, with 

less than 5% extra storage overhead. There is an insignificant improvement on 

decompression speed from PCWT, because the decoding phase in the decompression 

procedure is sequential. 

Table 5.2 Compression ratio, compression running time and decompression 

running time of 20 test images by using PCWT and JPEG-XR 

 

PCWT 

CR 

PCWT 

Comp  

Time 

(ms) 

PCWT 

Decomp 

Time 

(ms) 

JPEG-

XR 

CR 

JPEG-

XR 

Comp 

Time 

(ms) 

JPEG-XR 

Decomp 

Time 

 (ms) 

M2to5_01  6.24 41 66 6.78 106 117 

M2to5_02 3.20 44 96 3.66 152 167 

M2to5_03 3.15 39 59 3.39 97 102 

M2to5_04 2.48 40 47 2.61 76 78 

M2to5_05 2.87 40 57 2.97 98 100 

M5to10_01  2.83 62 170 3.36 274 271 

M5to10_02 3.20 45 95 3.66 151 165 

M5to10_03 4.35 51 102 4.17 173 180 

M5to10_04 1.95 55 135 2.01 212 211 

M5to10_05 3.82 53 129 4.71 198 215 

M10to20_01  2.70 81 299 2.99 519 534 

M10to20_02 3.60 94 292 4.41 464 453 

M10to20_03 2.28 70 268 2.43 459 451 

M10to20_04 4.06 72 212 4.07 352 366 

M10to20_05 3.08 68 202 3.09 348 335 

M_L20M_01  1.36 195 940 1.37 1211 1186 

M_L20M_02 4.85 136 459 5.85 692 681 

M_L20M_03 1.59 234 1241 1.61 1510 1507 

M_L20M_04 1.79 176 962 1.68 1239 1244 

M_L20M_05 2.50 124 604 2.77 936 938 
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Table 5.3 Weighted compression acceleration, weighted decompression 

acceleration and weighted size overhead for four image categories. 

 PCWT to JPEG-XR 

weighted 

compression 

acceleration 

PCWT to JPEG-XR 

weighted 

decompression 

acceleration 

PCWT to JPEG-

XR weighted 

size overhead 

2~5 MP 2.69 1.73 1.08 

5~10 MP 3.77 1.65 1.12 

10~20 MP 5.55 1.68 1.09 

> 20 MP 6.44 1.34 1.04 
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CHAPTER VI  

CONCLUSIONS AND FUTURE WORK  

PCWT is a fast and efficient wavelet tree based encoding algorithm. With 

carefully designed parallel lossless wavelet transform and coefficient encoding 

algorithm, PCWT can achieve more than 6 times faster encoding speed than the 

standard JPEG-XR implementation, with less than 5% extra storage overhead. 

Scalability of PCWT is high because most of the parallel steps do not have any 

hardware specification limitations. PCWT is also extensible. The current PCWT 

implementation is lossless, which meets the requirement of most medical image 

application. However, it is not difficult to change it into a lossy mode of operation.  

The main research contribution of this dissertation is that it did not only 

describe an accelerated compression algorithm within the context of GPGPU but also 

tried to demonstrate a GPGPU approach to solve existing sequential problems. 

GPGPU approach has its characteristic advantages and disadvantages, which rise from 

the GPU hardware and programming models.  In this research, limited hardware 

resource and relatively slow global memory I/O access speed of CUDA are identified 

as disadvantages. All the modifications and re-designs in this research are made to 

eliminate or at least relieve the impacts of those disadvantages on our final algorithm, 

without largely sacrificing its advantages. These modifications and re-designs include 

B-LDWT+B and two-stage encoding and exclude line-based implementation of 

BCWT [17] because of its nonadaptive characteristics. The experimental result is 

reported in a comprehensive manner by including data transfer time to demonstrate the 

author’s acknowledgement of GPGPU’s unique overhead and to propose a more 

accurate performance evaluation method of GPGPU solution. 

There are still a few possible improvements which can be addressed in the 

future as listed below:  

(1) Parallel multi-band MQD calculation. MQD bands within the same level 

can be calculated independently but in the current implementation, they are calculated 
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sequentially. Replacing the current sequential band calculation with parallel multi-

band calculation can introduce higher parallelism into the algorithm, which can 

achieve higher compression speed.  

(2) Multi-pass Qmax horizontal reduction. The horizontal reduction in Qmax 

search is the only place in the current implementation that assumes the data being 

processed can fit into one block’s shared memory. Multi-pass horizontal reduction will 

bring more generalized solution and it can be implemented similarly to the multi-pass 

vertical reduction. 

(3) Atomic operation based group encoding. Multiple passes in group encoding 

stage in compression procedure are used to avoid race condition that could generate 

false group encoding bitstream. Atomic operation can eliminate race condition 

between threads and further eliminate multiple passes in the group encoding stage. 

Each thread can handle one element rather than one group. However, atomic operation 

is generally slower than non-atomic operation, the atomic operation based group 

encoding is not necessarily faster than the current implementation.  

In summary, the newly developed PCWT offers an efficient and fast wavelet 

based lossless encoding/decoding algorithm which outperforms the current standard, 

lossless JPEG-XR.  PCWT can be easily modified to operate in lossless or lossy mode 

as required and will keep evolving with the algorithm improvement and hardware 

progress. 
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