ERK and JNK activation is essential for transformation by v-Rel

Date

2009-08

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

v-Rel is the acutely oncogenic member of the NF-[kappa]B family of transcription factors and transforms cells through the altered regulation of pathways normally controlled by cellular NF-[kappa]B. Initial studies revealed that expression of v-Rel results in the strong and sustained activation of the ERK and JNK MAP kinases. This induction is critical for the v-Rel transformed phenotype, as suppression of MAPK activity with chemical inhibitors or siRNA severely limited colony formation of v-Rel transformed cell lines of hematopoietic origin. However, signaling must be maintained within a certain range in these cells, as strong additional activation of either pathway through expression of constitutively active MKK mutants also attenuated the transformed phenotype. Studies in primary spleen cells revealed that MAPK signaling is also required for the early stages of v-Rel-mediated transformation. However, constitutive MAPK activity further enhanced the transformation efficiency of v-Rel in primary cells. These studies, as well as analogous experiments in DT40 cells, indicate distinct requirements for MAPK activity at different stages of v-Rel-mediated transformation. The proto-oncoprotein, c-Rel, only weakly activates ERK and JNK signaling compared to v-Rel. Importantly, elevated MAPK activity enhanced transformation by c-Rel, indicating that the ability of v-Rel to induce MAPK signaling is a major contributor to its oncogenic potential. Taken together, this work demonstrates an important role for ERK and JNK activity in transformation by v-Rel. Additional studies examined mechanisms through which MAPK activity is regulated in v-Rel transformed cells. Feedback regulation of the ERK activator, MKK1, at T292 was shown to limit ERK activation in v-Rel transformed cells, preventing the detrimental effects of constitutive activity. This result is the first indication that this regulation may have a role in the maintenance of transformation. Further, several v-Rel induced cytokines were identified that activate ERK and JNK signaling in v-Rel transformed cells, revealing one means by which v-Rel-dependent transcriptional changes lead to MAPK activation. These studies demonstrate the integration of multiple mechanisms in achieving the optimal levels of MAPK activity that are essential for v-Rel-mediated transformation.

Description

text

Citation