The theory of non-Markovian open quantum systems

Date

2008-05

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

We study the role of correlations with the environment as the source of non-Markovian quantum evolutions. We first focus on the impact that correlations with the environment can have on the dynamical map that evolve the system. We expand the set of initial states of a system and its environment that are known to guarantee completely positive reduced dynamics for the system when the combined state evolves unitarily. We characterize the correlations in the initial state in terms of its quantum discord. The induced maps can be not completely positive when quantum correlations including, but not limited to, entanglement are present. We discuss the implications and limitations of the Markov approximation necessary to derive the Kossakowski-Lindblad master equation. A generalized non-Markovian master equation is derived from the dynamical map of systems correlated with their environment. The physical meaning of not completely positive maps is studied to obtain a consistent theory of non-Markovian quantum dynamics. These are associated to inverse maps necessary to establish correlations and they give rise to a canonical embedding map that is local in time. This master equation goes beyond the Kossakowski-Lindblad master equation. Non-equilibrium quantum thermodynamics can be be studied within this theory. Through out this discussion, the general dynamics of two interacting qubits is used as an example for illustrations.

Description

text

Keywords

Citation