Three essays on the interface of computer science, economics and information systems

Date

2007

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis looks at three aspects related to the design of E-commerce systems, online auctions and distributed grid computing systems. We show how formal verification techniques from computer science can be applied to ensure correctness of system design and implementation at the code level. Through e-ticket sales example, we demonstrate that model checking can locate subtle but critical flaws that traditional control and auditing methods (e.g., penetration testing, analytical procedure) most likely miss. Auditors should understand formal verification methods, enforce engineering to use them to create designs with less of a chance of failure, and even practice formal verification themselves in order to offer credible control and assistance for critical e-systems. Next, we study why many online auctions offer fixed buy prices to understand why sellers and auctioneers voluntarily limit the surplus they can get from an auction. We show when either the seller of the dibbers are risk-averse, a properly chosen fixed permanent buy-price can increase the social surplus and does not decrease the expected utility of the sellers and bidders, and we characterize the unique equilibrium strategies of uniformly risk-averse buyers in a buy-price auction. In the final chapter we look at the design of a distributed grid-computing system. We show how code-instrumentation can be used to generate a witness of program execution, and show how this witness can be used to audit the work of self-interested grid agents. Using a trusted intermediary between grid providers and customers, the audit allows payment to be contingent on the successful audit results, and it creates a verified reputation history of grid providers. We show that enabling the free trade of reputations provides economic incentives to agents to perform the computations assigned, and it induces increasing effort levels as the agents' reputation increases. We show that in such a reputation market only high-type agents would have incentive to purchase a high reputation, and only low-type agents would use low reputations, thus a market works as a natural signaling mechanism about the agents' type.

Description

text

Keywords

Citation