Scaling and process effect on electromigration reliability for Cu/low k interconnects

Date

2007-05

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The microelectronics industry has been managing the RC delay problem arising from aggressive line scaling, by replacing aluminum (Al) by copper (Cu) and oxide dielectric by low-k dielectric. Electromigration (EM) turned out to be a serious reliability problem for Cu interconnects due to the implementation of mechanically weaker low-k dielectrics. In addition, line width and via size scaling resulted in the need of a novel diffusion barrier, which should be uniform and thin. The objective of this dissertation is to investigate the impacts of Ta barrier process, such as barrier-first and pre-clean first, and scaling of barrier and line/via on EM reliability of Cu/low-k interconnects. For this purpose, EM statistical test structures, having different number of line segments, line width, and via width, were designed. The EM test structures were fabricated by a dualdamascene process with two metal layers (M1/Via/M2), which were then packaged for EM tests. The package-level EM tests were performed in a specially designed vacuum chamber with pure nitrogen environment. The novel barrier deposition process, called barrier-first, showed a higher (jL)[subscript c] product and prolonged EM lifetime, compared with the conventional Ta barrier deposition process, known as pre-clean first. This can be attributed to the improved uniformity and thickness of the Ta layer on the via and trench, as confirmed by TEM. As for the barrier thickness effect, the (jL)c product decreased with decreasing thickness, due to reduced Cu confinement. A direct correlation between via size and EM reliability was found; namely, EM lifetime and statistics degraded with via size. This can be attributed to the fact that critical void length to cause open circuit is about the size of via width. To investigate further line scaling effect on EM reliability, SiON (siliconoxynitride) trenchfilling process was introduced to fabricate 60-nm lines, corresponding to 45-nm technology, using a conventional, wider line lithograph technology. The EM lifetime of 60-nm fine lines with SiON filling was longer than that of a standard damascene structure, which can be attributed to a distinct via/metal-1 configuration in reducing process-induced defects at the via/metal-1 interface.

Description

text

Keywords

Citation