Photoassociation experiments on ultracold and quantum gases in optical lattices

Date

2004

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis describes the results of several experiments that studied the photoassociation of an ultracold atomic Rb gas. In the first experiment, we produced ultracold diatomic molecules from an atomic gas via single-color photoassociation. The molecules were detected with resonance-enhanced multiphoton ionization. Trapping of these molecules in a quadrupole magnetic trap, with lifetimes up to 20 seconds, was also demonstrated. In addition, the rate constant for inelastic collisions between the trapped molecules and atoms was determined from measurements of the atomic density dependence of the decay rate of the trapped molecules. In another experiment, stimulated Raman photoassociation of Rb atoms in a Mott insulator state was studied. A Bose-Einstein condensate (BEC) of 87Rb atoms was loaded into a three-dimensional optical lattice formed by the interference pattern of three orthogonal standing wave laser fields. This system constitutes a very good realization of the Bose-Hubbard model, which predicts a quantum phase transition between a superfluid state and a Mott insulator state at a particular lattice height. A time-of-flight imaging method was used to study the state of the atomic gas, and the quantum phase transition was observed at the predicted lattice height. The signature of the phase transition was the disappearance and reappearance of peaks in the image that arose from the interference of atoms originating from different lattice sites. Two coherent laser fields were applied to the gas in its Mott insulating state, and tuned close to a Raman photoassociation resonance, and this resulted in an observable loss of atoms due to the formation of molecules. This transition exhibited a double-peaked spectrum, with one of the peaks arising from photoassociation of atoms in sites containing only two atoms, and the other from sites containing three atoms. Also, the loss of atoms vs. the duration of the Raman photoassociation period was studied, with the lasers tuned to the peak corresponding to two atoms per site. It was found that a central core of the gas, containing about 40 percent of the atoms, exhibited a coherent oscillation between an atomic and molecular quantum gas.

Description

text

Keywords

Citation