Visualizing flow patterns in coupled geomechanical simulation using streamlines

Date

2009-05-15

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Reservoir geomechanics is a production induced phenomena that is experienced in large number of fields around the world. Hydrocarbon production changes the pore pressure which in turn alters the in-situ stress state. For reservoirs that are either stress sensitive or where rock is soft and unconsolidated, stresses have appreciable effect on rock properties like porosity and permeability. Anisotropic and isotropic permeability changes affect flow direction and movement of flood front thereby influencing well performance and reservoir productivity. Coupling of geomechanical calculation with multi-phase flow calculation is needed to make prudent predictions about the reservoir production and recovery. The post processing tools provided with the simulators cannot monitor flood front movement and fail to capture important information like flow directionality and dominant phase in a flow. Geomechanical simulation is combined with streamline tracing to aid in better understanding of the reservoir dynamics through visualization of flow patterns in the reservoir. Streamline tracing is a proved reservoir engineering tool that is widely used by industry experts to capture information on flood movement, injector-producer relations and swept area. In the present research, we have incorporated total velocity streamlines and phase streamlines for coupled geomechanical simulation and compared the results with streamline tracing for conventional reservoir simulator to explain geomechanics behavior on reservoir flow processes in a more detailed and appealing manner. Industry standard simulators are used for coupled geomechanical simulation and conventional simulation and streamline tracing has been done through in-house tracing code. The research demonstrates the benefits and power of streamline tracing in visualizing flow patterns through work on two cases; first, a synthetic case for studying water injection in a five spot pattern and second, a SPE 9th comparative study. The research gives encouraging results by showing how geomechanics influences reservoir flow paths and reservoir dynamics through visualization of flow. The streamlines captures flow directionality, information regarding appearance and disappearance of gas phase and the connectivity between injector and producer.

Description

Citation