Validation of Surface Performance-Graded Specification For Surface Treatment Binders

Date

2012-10-19

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The design and selection of surface treatment binders in service is currently based on specifications that only account for the penetration and ductility of emulsion residues or the penetration and viscosity of hot-applied asphalt cements. These specifications consider neither the entire range of temperatures that the binders may be subjected to during production and in service, nor long-term aging behavior. A surface performance-graded (SPG) specification for the selection of surface treatment binders was developed as part of previous Texas Department of Transportation (TxDOT) and National Cooperative Highway Research Program (NCHRP) projects. The work performed under the TxDOT Project 0-6616 was the basis for this thesis. In this project, the SPG specification, which is performance-based and takes into account the physical properties of the binder at the temperature ranges in which the material will be used, was further validated. This was accomplished by standardizing the emulsion residue recovery method through the evaluation of two warm oven methods, exploring the exclusive use of the dynamic shear rheometer (DSR) for determining performance-based properties, and further field validating the thresholds for these properties. The laboratory and field results were used to revise the SPG specification for surface treatment binders in service.

Binder samples collected from chip seal projects constructed on selected highway sections in Texas in summer 2011 were tested and graded according to the existing SPG specification developed in previous research projects. Two warm oven emulsion residue recovery methods were used and compared. New DSR tests, including the multiple stress creep recovery (MSCR) test and the frequency sweep test were evaluated for developing additional criteria in the SPG specification. The SPG grades of the surface binder samples evaluated from laboratory tests were compared with the actual field performance of the highway sections one year after construction. The SPG specification was found to be functional in terms of enabling the selection of binders to ensure adequate surface treatment performance. Moreover, the results obtained from the MSCR and DSR frequency sweep tests were compared with field performance to develop additional criteria in the specification. Further validation is recommended to investigate the effects of construction and quality control processes, as this study is limited to producing a revised SPG specification for properties that address stiffness and aggregate retention in service.

Description

Citation