Nanocrystals Embedded Zirconium-doped Hafnium Oxide High-k Gate Dielectric Films

Date

2012-10-19

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Nanocrystals embedded zirconium-doped hafnium oxide (ZrHfO) high-k gate dielectric films have been studied for the applications of the future metal oxide semiconductor field effect transistor (MOSFET) and nonvolatile memory. ZrHfO has excellent gate dielectric properties and can be prepared into MOS structure with a low equivalent oxide thickness (EOT). Ruthenium (Ru) modification effects on the ZrHfO high-k MOS capacitor have been investigated. The bulk and interfacial properties changed with the inclusion of Ru nanoparticles. The permittivity of the ZrHfO film was increased while the energy depth of traps involved in the current transport was lowered. However, the barrier height of titanium nitride (TiN)/ZrHfO was not affected by the Ru nanoparticles. These results can be important to the novel metal gate/high-k/Si MOS structure. The Ru-modified ZrHfO gate dielectric film showed a large breakdown voltage and a long lifetime. The conventional polycrystalline Si (poly-Si) charge trapping layer can be replaced by the novel floating gate structure composed of discrete nanodots embedded in the high-k film. By replacing the SiO2 layer with the ZrHfO film, promising memory functions, e.g., low programming voltage and long charge retention time, can be expected. In this study, the ZrHfO high-k MOS capacitors that separately contain nanocrystalline ruthenium oxide (nc-RuO), indium tin oxide (nc-ITO), and zinc oxide (nc-ZnO) have been successfully fabricated by the sputtering deposition method followed with the rapid thermal annealing process. Material and electrical properties of these kinds of memory devices have been investigated using analysis tools such as XPS, XRD, and HRTEM; electrical characterizations such as C-V, J-V, CVS, and frequency-dependent measurements. All capacitors showed an obvious memory window contributed by the charge trapping effect. The formation of the interface at the nc-RuO/ZrHfO and nc-ITO/ZrHfO contact regions was confirmed by the XPS spectra. Charges were deeply trapped to the bulk nanocrystal sites. However, a portion of holes were loosely trapped at the nanocrystal/ZrHfO interface. Charges trapped to the different sites lead to different detrapping characteristics. For further improving the memory functions, the dual-layer nc-ITO and -ZnO embedded ZrHfO gate dielectric stacks have been fabricated. The dual-layer embedded structure contains two vertically-separated nanocrystal layers with a higher density than the single-layer embedded structure. The critical memory functions, e.g., memory window, programming efficiency, and charge retention can be improved by using the dual-layer nanocrystals embedded floating gate structure. This kind of gate dielectric stack is vital for the next-generation nonvolatile memory applications.

Description

Citation