IP Routing Table Compression Using TCAM and Distance-one Merge

Date

2011-02-22

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In an attempt to slow the exhaustion of the Internet Protocol (IP) address space, Class-less Inter-Domain Routing (CIDR) was proposed and adopted. However, the decision to utilize CIDR also increases the size of the routing table, since it allows an arbitrary partitioning of the routing space. We propose a scheme to reduce the size of routing table in the CIDR context. Our approach utilizes a well-known and highly efficient heuristic to perform 2-level logic minimization in order to compress the routing table. By considering the IP routing table as a set of completely specified logic functions, we demonstrate that our technique can achieve about 25% reduction in the size of IP routing tables, while ensuring that our approach can handle routing table updates in real-time. The resulting routing table can be used with existing routers without needing any change in architecture. However, by realizing the IP routing table as proposed in this thesis, the implementation requires less complex hardware than Ternary CAM (TCAM) which are traditionally used to implement IP routing tables. The proposed architecture also reduces lookup latency by about 46%, hardware area by 9% and power consumed by 15% in contrast to a TCAM based implementation.

Description

Citation