Global ice cloud observations: radiative properties and statistics from moderate-resolution imaging spectroradiometer measurements

Date

2009-05-15

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Ice clouds occur quite frequently, yet so much about these clouds is unknown. In recent years, numerous investigations and field campaigns have been focused on the study of ice clouds, all with the ultimate goal of gaining a better understanding of microphysical and optical properties, as well as determining the radiative impact. Perhaps one of the most recognized instruments used for such research is the Moderate-resolution Imaging Spectroradiometer (MODIS), carried aboard the NASA EOS satellites Terra and Aqua. The present research aims to support ongoing efforts in the field of ice cloud research by use of observations obtained from Terra and Aqua MODIS. First, a technique is developed to infer ice cloud optical depth from the MODIS cirrus reflectance parameter. This technique is based on a previous method developed by Meyer et al. (2004). The applicability of the algorithm is demonstrated with retrievals from level-2 and -3 MODIS data. The technique is also evaluated with the operational MODIS cloud retrieval product and a method based on airborne ice cloud observations. From this technique, an archive of daily optical depth retrievals is constructed. Using simple statistics, the global spatial and temporal distributions of ice clouds are determined. Research has found that Aqua MODIS observes more frequent ice clouds and larger optical depths and ice water paths than does Terra MODIS. Finally, an analysis of the time series of daily optical depth values revealed that ice clouds at high latitudes, which are most likely associated with synoptic scale weather sytems, persist long enough to move with the upper level winds. Tropical ice clouds, however, dissipate more rapidly, and are in all likelihood associated with deep convective cells.

Description

Citation