A validation of ground penetrating radar for reconstructing the internal structure of a rock glacier: Mount Mestas, Colorado, USA

Show simple item record


dc.contributor.advisor Everett , Mark en_US
dc.contributor.committeeMember Tchakerian , Vatche P . en_US
dc.creator Jorgensen , William Revis en_US
dc.date.accessioned 2010 -01 -15T00 :00 :41Z
dc.date.accessioned 2014 -02 -19T19 :35 :58Z
dc.date.available 2010 -01 -15T00 :00 :41Z
dc.date.available 2014 -02 -19T19 :35 :58Z
dc.date.created 2007 -05 en_US
dc.date.issued 2009 -05 -15 en_US
dc.identifier.uri http : / /hdl .handle .net /1969 .1 /ETD -TAMU -1320
dc.description.abstract Rock glaciers are dynamic landforms and , as such , exhibit interesting and welldeveloped structural features , which translate to surface morphology in the form of ridges and furrows . These distinguishing features have led researchers to study the physics behind the movement and internal deformation of rock glaciers . For years researchers had no access to the internal makeup of rock glaciers . Thus , proposed models and discussion have been based on theoretical concepts of electromagnetic (EM ) wave propogation . With the application of ground penetrating radar (GPR ) to provide a view of the interior structure of a rock glacier , researchers had ?real ? data to verify their models . However , no comparison has been made between a GPR profile and an actual cross -section of a rock glacier . The purpose of this thesis is to validate the fidelity of GPR in showing the actual structure of a rock glacier . A trench that was excavated through the toe of a rock glacier on Mount Mestas in south central Colorado provided a view of the actual structure of the landform . The structure in the trench was compared with GPR and EM data . The GPR study was conducted using a PulsEKKOTM 100A subsurface imaging radar with 25 , 50 , and 100 MHz antennas , to detect dielectric contrasts within the rock glacier . A frequency domain EM34 by Geonics LtdTM was also used to supplement the GPR data by measuring the rock glacier ?s conductivity at various depths . This thesis proved , by utilizing statistics , that GPR is a useful tool in visualizing the interior structure of rock glaciers . The 100 MHz antennas clearly show small scale reflection horizons caused by changes in clast orientation and subsurface material composition . These events coincide with structures seen in the trench . Individual clasts greater than 0 .375 m were also recognized as point sources in the GPR profiles . Large continuous bedding layers were observed with the 25 and 50 MHz antennas , which reflect the structure seen in the trench . A large scale thrust fault was also located with the GPR . However , this was not visible in the panoramic photograph because the fault occurs below the base of the trench . en_US
dc.format.medium electronic en_US
dc.format.mimetype application /pdf en_US
dc.language.iso en _US en_US
dc.subject Rock Glacier en_US
dc.title A validation of ground penetrating radar for reconstructing the internal structure of a rock glacier : Mount Mestas , Colorado , USA en_US
dc.type Book en
dc.type.genre Electronic Thesis en_US
dc.type.material text en_US
dc.format.digitalOrigin born digital en_US

Citation

A validation of ground penetrating radar for reconstructing the internal structure of a rock glacier: Mount Mestas, Colorado, USA. Available electronically from http : / /hdl .handle .net /1969 .1 /ETD -TAMU -1320 .

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace

Advanced Search

Browse