Mechanism design for distributed task and resource allocation among self-interested agents in virtual organizations

Date

2007-09-17

Journal Title

Journal ISSN

Volume Title

Publisher

Texas A&M University

Abstract

The aggregate power of all resources on the Internet is enormous. The Internet can be viewed as a massive virtual organization that holds tremendous amounts of information and resources with different ownerships. However, little is known about how to run this organization efficiently. This dissertation studies the problems of distributed task and resource allocation among self-interested agents in virtual organizations. The developed solutions are not allocation mechanisms that can be imposed by a centralized designer, but decentralized interaction mechanisms that provide incentives to self-interested agents to behave cooperatively. These mechanisms also take computational tractability into consideration due to the inherent complexity of distributed task and resource allocation problems. Targeted allocation mechanisms can achieve global task allocation efficiency in a virtual organization and establish stable resource-sharing communities based on agents???????????? own decisions about whether or not to behave cooperatively. This high level goal requires solving the following problems: synthetic task allocation, decentralized coalition formation and automated multiparty negotiation. For synthetic task allocation, in which each task needs to be accomplished by a virtual team composed of self-interested agents from different real organizations, my approach is to formalize the synthetic task allocation problem as an algorithmic mechanism design optimization problem. I have developed two approximation mechanisms that I prove are incentive compatible for a synthetic task allocation problem. This dissertation also develops a decentralized coalition formation mechanism, which is based on explicit negotiation among self-interested agents. Each agent makes its own decisions about whether or not to join a candidate coalition. The resulting coalitions are stable in the core in terms of coalition rationality. I have applied this mechanism to form resource sharing coalitions in computational grids and buyer coalitions in electronic markets. The developed negotiation mechanism in the decentralized coalition formation mechanism realizes automated multilateral negotiation among self-interested agents who have symmetric authority (i.e., no mediator exists and agents are peers). In combination, the decentralized allocation mechanisms presented in this dissertation lay a foundation for realizing automated resource management in open and scalable virtual organizations.

Description

Citation