Thermo-chemical conversion of dairy waste based biomass through direct firing

Date

2007-04-25

Journal Title

Journal ISSN

Volume Title

Publisher

Texas A&M University

Abstract

Growing rates of manure produced from large dairies have increased concern for the environmental quality of nearby streams and watersheds. Typically the manure from the freestalls on these dairies is flushed with water to a mechanical separator. Here, flushed dairy biomass (DB) is parted into separated solids and separated liquid. The separated liquid is discharged into lagoons for treatment and eventual land application. This thesis proposes thermodynamic models for firing DB in small scale boiler systems that would eliminate land application and lagoons, which are being claimed to be the source of nutrient leaching and overloading. Fuel analysis of flushed DB from a dairy in central Texas show that it contains 93%moisture (%M), 3%ash (%A), and 4%combustibles (%Cb), while separated DB solids contain 81%M, 2%A, and 17%Cb. The dry, ash-free higher heating value of DB is approximately 20,000 kJ/kg. Using dry, ash-free results, computations can be made over ranges of %M and %A. For example, DB containing 70%M requires 9.74%Cb to vaporize all moisture and produce gaseous products of combustion at 373 K, but requires 17.82%Cb to burn in a regenerative combustor with a flame temperature of 1200 K. Separated solids that are pressed in an auger to 70%M (3%A and 27%Cb) can burn at 1200 K with exhaust temperatures of up to 1130 K and a minimum required heat exchanger effectiveness of 15%. Pressed solids can thus be fired in a boiler, where the remaining separated liquid can be used as feed water. The pressed solids only can release about 30% of the heat required to vaporize the remaining unclean feed water. However, pressed DB solids can be blended with drier fuels to vaporize almost all the unclean water. The low quality steam produced from the unclean water can be used in thermal processes on the farm. A similar system can be developed for vacuumed DB without the need to vaporize unclean feed water. As for large dairies with anaerobic digester systems already installed, directly firing the produced biogas in a small scale boiler system may be another way to similarly vaporize the remaining effluent.

Description

Citation